清华大学-阿姆斯特丹大学逻辑学联合研究中心从2021年开始举办逻辑学暑期学校,邀请知名学者授课,向国内外本科生、研究生和青年教师开放。暑期学校旨在为广大学员提供系统学习逻辑学、了解逻辑学领域最新研究进展、开展学术交流的平台,进一步推动逻辑学知识的普及,促进逻辑学与哲学、计算机科学、语言学、数学和认知科学等学科的交叉研究,发展逻辑学教育事业,为未来学术研究培养后备人才。
第四届清华逻辑学暑期学校
- 时间:2024年7月8日-12日
- 地点:清华大学
- 形式:线下授课
==课程==
授课教师: Maria Aloni (The University of Amsterdam)
时间:7月8日-12日
摘要: In team semantics, formulas are interpreted with respect to a set of points of evaluation (a team) rather than single points. In the course we will present 3 examples of team-based logical systems: Bilateral State-based Modal Logic (Aloni 2022); Inquisitive Logic (Ciardelli, Groenendijk and Roelofsen 2019) and Dependence Logic (Väänänen 2007); and discuss their linguistic and philosophical applications, which include:
- Bilateral State-based Modal Logic: ignorance and free choice inference, epistemic modals and epistemic contradiction;
- Inquisitive Logic: questions and attitude verbs;
- Dependence Logic: exceptional scope of indefinites, marked indefinites cross-linguistically.
授课教师: Yde Venema (The University of Amsterdam)
时间:7月8日-12日
摘要: The modal μ-calculus is an extension of basic modal logic with least- and greatest fixpoint operators, which enable the expression of various kinds of recursive phenomena in the language. The logic has many applications, and a rich theory with many links to other areas such as algebra, order, infinite games, and automata.
The course will give a general introduction to the theory of the modal μ-calculus. We start with introducing the syntax and game semantics of the logic, and we link this to the algebraic semantics which is based on the theory of fixpoint operators. We discuss some model-theoretic results (including bisimulation invariance and the finite model property), and introduce some derivation systems.
*两门课程均为英文授课,学员可根据兴趣选修课程, 按照老师的要求完成作业。对于参加并完成课程的学员,联合研究中心将颁发结业证书。欢迎对逻辑学感兴趣的学生和老师参加。
==注册==
课程对校内外师生免费开放,校外参加的学生需自理食宿。请有兴趣参加的各位务必于报名前仔细阅读课程介绍,确保能够在课程开始前基本掌握所要求的预备知识,以保证课堂听课与互动效果。以下为具体报名要求:
- 请在此报名页面填写基本信息;
- 报名需推荐人一名,推荐人一般情况下应为报名人所在院校老师;推荐人需发送邮件至scw@mail.tsinghua.edu.cn确认报名人基本信息与自我陈述内容属实。
为保证课堂效果,每门课容量设置为30人左右。若报名人数过多我们将根据报名人的自我陈述内容进行筛选。清华在校学生可直接通过选课系统注册暑期课程,课程名“逻辑学专题与前沿”(00692241-90)。
- 报名截止日期:2024年3月10日
- 录取通知日期:2024年3月15日
若有疑问请咨询石辰威( scw@mail.tsinghua.edu.cn )。