Expressivity and Inference in Hybrid Logic

Patrick Blackburn

Homework Sheet 1

The Second Tsinghua Logic Summer School June 27 – July 3, 2022, Beijing, China

Exercise 1. Give the standard translation of $\Diamond \Diamond i \rightarrow \Diamond i$.

Exercise 2. We say that a frame (W, R) is convergent (or Church Rosser) iff

$$\forall x \forall y \forall z (Rxy \land Rxz \rightarrow \exists w (Ryw \land Rzw)).$$

Show that modal formula $\Diamond \Box p \to \Box \Diamond p$ defines the class of convergent frames. That is, show (a) that this formula is valid on all convergent frames, and (b) that if a frame is *not* convergent, you can falsify this formula on it.

Exercise 3. We say that a frame (W, R) is antisymmetric iff

$$\forall x \forall y ((Rxy \land Ryx) \to x = y).$$

Show that the pure hybrid formula $@_i \square (\lozenge i \to i)$ defines the class antisymmetric frames. That is, show (a) that this formula is valid on all antisymmetric frames, and (b) that if a frame is *not* antisymmetric, you can falsify this formula on it. (c) Can you think of another formula not containing @ that defines this class of frames?

Exercise 4. Let $\mathcal{M} = (W, R, V)$ and $\mathcal{M}' = (W', R', V')$ be models for the basic hybrid language (with just one \square and \lozenge), and let Z be a bisimulation-with-constants between \mathcal{M} and \mathcal{M}' . Show that for all basic hybrid formulas φ , and all worlds w in \mathcal{M} and w' in \mathcal{M}' such that w is bisimilar to w' we have that:

$$\mathcal{M}, w \vDash \varphi \text{ iff } \mathcal{M}', w' \vDash \varphi.$$