Modal μ -Calculus Course (Tsinghua 2024)

Third homework assignment

• Deadline: 11 July, 14h20.

• Success!

(a)

Exercise 1 (bisimulation invariance)

The aim of this exercise is to give an alternative proof of the bisimulation invariance of μ formulas, on the basis of the algebraic semantics of the modal μ -calculus. In the margin of
the proof it is indicated where your input is required.

As usual, we will not make a distinction between proposition letters and variables, but we will have to define the notion of a bisimulation relative to a set P of proposition letters, see Definition 1.18 in the notes.

Theorem Let ξ be a modal μ -formula and let P be a set of proposition letter such that $FV(\xi) \subseteq P$. Then for any P-bisimulation Z linking two states s and s' in LTSs $\mathbb S$ and $\mathbb S'$, respectively, we have:

$$\mathbb{S}, s \Vdash \xi \iff \mathbb{S}', s' \Vdash \xi.$$

Proof. The proof proceeds by induction on the complexity of ξ . You are only required to prove the inductive step for the case that ξ is of the form $\nu x.\delta$. Let P^+ be the set $\mathsf{P} \cup \{x\}$.

Assume that $Z: \mathbb{S}, s \hookrightarrow_{\mathsf{P}} \mathbb{S}', s'$ and that $\mathbb{S}, s \Vdash \xi$. It follows immediately that there is a postfix point $X \subseteq S$ of the map $\delta_x^{\mathbb{S}}$ to which s belongs. Likewise, in order to prove that $\mathbb{S}', s' \Vdash \xi$ it suffices to find a single postfix point $X' \subseteq S'$ such that $s' \in X'$.

Let $M \subseteq S \times S$ be the maximal P-bisimulation on S. (If needed, check Exercise 2.2.8 from the Modal Logic book for background.) Call a set $U \subseteq S$ M-closed if $u \in U$ and uMv imply $v \in U$. We need a special such set which is provided by the following claim.

CLAIM 1 There is an M-closed postfixpoint Y of δ such that $X \subseteq Y$.

PROOF OF CLAIM Let Y be the smallest M-closed subset of S such that $X \subseteq Y$. Prove that Y is a postfixpoint of δ . Hint: show that $[\![\delta]\!]^{\mathbb{S}[x\mapsto Y]}$ is M-closed.

Now define $X' \subseteq S'$ to be the range of Y under Z, i.e.

$$X' := \{ t' \in \mathbb{S}' \mid tZt' \text{ for some } t \in Y \}.$$

CLAIM 2 Z is an P⁺-bisimulation between $\mathbb{S}[x \mapsto Y]$ and $\mathbb{S}'[x \mapsto X']$.

(b) PROOF OF CLAIM Provide this proof.

Claim 3 X' is a postfixpoint of δ in \mathbb{S}' .

(c) PROOF OF CLAIM Provide this proof.

Finally, from Claim 2 and the assumption that sZs' it immediately follows that $s' \in X'$, so by the previous claim we obtain that $\mathbb{S}', s' \Vdash \nu x.\delta$. QED

(d) What goes wrong if you try to define X' as the range of X under Z, instead of as the range of Y under Z?