Modal μ -Calculus Course (Tsinghua 2024)

Second homework assignment

• Deadline: 10 July, 14h20.

• Success!

Exercise 1 In this exercise you are asked to give a very short justification of your answer, but it is not needed to prove that the formulas which you provide are correct.

- (a) Give a μ ML-formula $\xi(p,q)$ such that, for any pointed Kripke model (\mathbb{S}, s) we have that $\mathbb{S}, s \Vdash_g \xi$ iff there is a path starting at s on which p is true infinitely often, and q is true everywhere.
- (b) Give a μ ML-formula $\xi(p,q)$ such that, for any pointed Kripke model (\mathbb{S}, s) we have that $\mathbb{S}, s \Vdash_g \xi$ iff there is a path starting at s on which p is true infinitely often, and q is true only finitely often.

Exercise 2 We write $\varphi \models \psi$ to denote that ψ is a *local consequence* of φ , that is, if for all pointed Kripke models (\mathbb{S}, s) it holds that $\mathbb{S}, s \Vdash_g \varphi$ implies $\mathbb{S}, s \Vdash_g \psi$. Show that $\mu x.\nu y.\alpha(x,y) \models \nu y.\mu x.\alpha(x,y)$, for all formulas α .

Exercise 3 (BONUS) Let φ, ψ be any two clean formulas of the modal μ -calculus such that ψ is free for x in φ ; it will also be convenient to assume that ψ is not a subformula of φ . Show by a game semantic argument that the following so-called 'co-induction principle' holds for greatest fixpoints: if $\psi \models \varphi[\psi/x]$, then $\psi \models \nu x.\varphi$ also. (Here we write $\alpha \models \beta$ to denote that β is a *local consequence* of α , that is, if for all pointed Kripke models (\mathbb{S}, s) it holds that $\mathbb{S}, s \Vdash_g \alpha$ implies $\mathbb{S}, s \Vdash_g \beta$.)