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Introduction

The study of the modal p-calculus can be motivated from various (not necessarily disjoint!)
directions.

Process Theory In this area of theoretical computer science, one studies formalisms for de-
scribing and reasoning about labelled transition systems — these being mathematical struc-
tures that model processes. Such formalisms then have important applications in the speci-
fication and verification of software. For such purposes, the modal p-calculus strikes a very
good balance between computational efficiency and expressiveness. On the one hand, the
presence of fixpoint operators make it possible to express most, if not all, of the properties
that are of interest in the study of (ongoing) behavior. But on the other hand, the formalism
is still simple enough to allow an (almost) polynomial model checking complexity and an
exponential time satisfiability problem.

Modal Logic From the perspective of modal logic, the modal p-calculus is a well-behaved
extension of the basic formalism, with a great number of attractive logical properties. For
instance, it is the bisimulation invariant fragment of second order logic, it enjoys uniform
interpolation, and the set of its validities admits a transparent, finitary axiomatization, and
has the finite model property. In short, the modal p-calculus shares (or naturally generalizes)
all the nice properties of ordinary modal logic.

Mathematics and Theoretical Computer Science More generally, the modal u-calculus has a
very interesting theory, with lots of connections with neighboring areas in mathematics and
theoretical computer science. We mention automata theory (more specifically, the theory
of finite automata operating on infinite objects), game theory, universal algebra and lattice
theory, and the theory of universal coalgebra.

Open Problems Finally, there are still a number of interesting open problems concerning the
modal p-calculus. For instance, it is unknown whether the characterization of the modal
p-calculus as the bisimulation invariant fragment of monadic second order logic still holds if
we restrict attention to finite structures, and in fact there are many open problems related
to the expressiveness of the formalism. Also, the exact complexity of the model checking
problem is not known. And to mention a third example: the completeness theory of modal
fixpoint logics is still a largely undeveloped field.

Summarizing, the modal p-calculus is a formalism with important applications in the field
of process theory, with interesting metalogical properties, various nontrivial links with other
areas in mathematics and theoretical computer science, and a number of intriguing open
problems. Reason enough to study it in more detail.



1 Basic Modal Logic

As mentioned in the preface, we assume familiarity with the basic definitions concerning the
syntax and semantics of modal logic. The purpose of this first chapter is to briefly recall
notation and terminology. We focus on some aspects of modal logic that feature prominently
in its extensions with fixpoint operators.

Convention 1.1 Throughout this text we let Prop be a countably infinite set of propositional
variables, whose elements are usually denoted as p, q, 7, x,¥, 2, . . ., and we let D be a finite set
of (atomic) actions, whose elements are usually denoted as d, e, c,... . We will usually focus
on a finite subset P of Prop, consisting of those propositional variables that occur freely in a
particular formula. In practice we will often suppress explicit reference to Prop, P and D.

1.1 Basics

Structures

» Introduce LTSs as process graphs

Definition 1.2 A (labelled) transition system, LTS, or (Kripke) model of type (P,D) is a
triple S = (S, V, R) such that S is a set of objects called states or points, V : P — ©(S) is a
valuation, and R = {Ry C S x S |d € D} is a family of binary accessibility relations. In case
D is a singleton, we will simply write R for the unique accessibility relation in a model.
Elements of the set Ry[s] := {t € S| (s,t) € Ry} are called d-successors of s. A transition
system is called image-finite or finitely branching if Ry[s| is finite, for every d € D and s € S.
A pointed transition system or Kripke model is a pair (S, s) consisting of a transition
system S and a designated state s in S. <

Remark 1.3 It will occasionally be convenient to work with an alternative, coalgebraic pre-
sentation of transition systems. Intuitively, it should be clear that instead of having a val-
uation V' : P — p(S5), telling us at which states each proposition letter is true, we could
just as well have a marking oy : S — (P) informing us which proposition letters are
true at each state. Also, a binary relation R on a set S can be represented as a map
R[] : § — p(S) mapping a state s to the collection R][s| of its successors. In this line, a family
R={RyC S xS |dc D} of accessibility relations can be seen as a map o : S — p(95)P,
where p(S)P denotes the set of maps from D to p(9).

Combining these two maps into one single function, we see that a transition system S =
(S, V, R) of type (P,D) can be seen as a pair (S, 0), where o : S — p(P) x p(S)P is the map
given by o(s) := (oy(s),or(S)). <

For future reference we define the notion of a Kripke functor.

Definition 1.4 Fix a set P of proposition letters and a set D of atomic actions. Given a set
S, let Kp pS denote the set
KppS := p(P) x p(S)P.

This operation will be called the Kripke functor associated with D and P.
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A typical element of Kp pS will be denoted as (7, X), with 7 C P and X = {Xy | d € D}
with X4 C S for each d € D.

When we take this perspective we will sometimes refer to Kripke models as KppS-
coalgebras or Kripke coalgebras. <

Given this definition we may summarize Remark 1.3 by saying that any transition system
can be presented as a pair S = (5,0 : S — KS) where K is the Kripke functor associated with
S. In practice, we will usually write K rather than Kp p.

Syntax

Working with fixpoint operators, we may benefit from a set-up in which the use of the negation
symbol may only be applied to atomic formulas. The price that one has to pay for this is
an enlarged arsenal of primitive symbols. In the context of modal logic we then arrive at the
following definition.

Definition 1.5 The language MLp of polymodal logic in D is defined as follows:

pu=p|p|l L] T|leoeVe | oAp | Oqp | Ogp

where p € Prop, and d € D. Elements of MLp are called (poly-)modal formulas, or briefly,
formulas. In case the set D is a singleton, we speak of the language ML of basic modal logic or
monomodal logic; in this case we will denote the modal operators by & and 0O, respectively.

Given a finite set P of propositional variables, we let MLp(P) denote the set of formulas in
which only variables from P occur. <

Often the sets P and D are implicitly understood, and suppressed in the notation. Gen-
erally it will suffice to treat examples, proofs, etc., from monomodal logic.
We will need some definitions and notations concerning atomic formulas.

Definition 1.6 Let P be a set of propositional variables. We define the sets Lit(P) and
At(P) of, respectively, literals and atomic formulas over P as follows:

Lit(P) := {p,p|peP}
At(P) = {L, T}ULit(P)
We will generally use the symbol ¢ to denote an arbitrary literal. <

Remark 1.7 The negation ~¢ of a formula ¢ can inductively be defined as follows:

~1 = T ~T = 1

~p =D ~p = p
~eVY) = ~p A~y ~eAY) =~V sy
~Uayp = gy ~O g = Ogr~g

On the basis of this, we can also define the other standard abbreviated connectives, such as
— and . <
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We assume that the reader is familiar with standard syntactic notions such as those of
a subformula or the construction tree of a formula, and with standard syntactic operations
such as substitution. Concerning the latter, we let p[1)/p] denote the formula that we obtain
by substituting all occurrences of p in ¢ by .

Definition 1.8 We define the collection Sf(§) of subformulas of a modal formula £ by the
following induction on the complexity of &:

Sf(L) = {L}

SF(T) = {T}

Sf(p) = {pn}

Sf(p) = {p}

Sflexy) = {ox9}USfe)USf(¥) where x € {V,A}

Sf(Qp) = {Q¢}USf(p) where Q € {Cy4,04 | d € D}
We write ¢ <1 to denote that ¢ is a subformula of ). The size of a formula & is defined as
the number of its subformulas, |£| := |Sf(£)]. <
Semantics

The relational semantics of modal logic is well known. The basic idea is that the modal
operators ¢4 and Oy are both interpreted using the accessibility relation Rg.
The notion of truth (or satisfaction) is defined as follows.

Definition 1.9 Let S = (S, 0) be a transition system of type (P,D). Then the satisfaction
relation |+ between states of S and formulas of MLp(P) is defined by the following formula
induction.

S,slkp if seV(p),
S,sl-p if s¢&V(p),
S,slF L never,
S,slFT always,

S,slFepVvy if S;slkeorS, s,
S,slFpAyp if S;sl-pandS, s,
S,sl-<Cgqp if S, t Ik ¢ for some t € Ryls],
S,slFOge if S,tlk ¢ for all t € Ry[s].

We say that ¢ is true or holds at s if S, s |- ¢, and we let the set
[¢]° :={s€ SIS, sl ¢}

denote the meaning or extension of ¢ in S. <

Alternatively (but equivalently), one may define the semantics of modal formulas directly
in terms of this meaning function [¢]°. This approach has some advantages in the context of
fixpoint operators, since it brings out the role of the powerset algebra (.S) more clearly.
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Remark 1.10 Fix an LTS S, then define [p]° by induction on the complexity of ¢:
[p]° = Vip) [p])° = S\V(p)

[L]S = @ [T]® = S
[evy]® = [e]°uU[v]® [eAv]® = [e]*N[¥]®
[Cael® = (Ra)le]® [Cael® = [Ralle]®

Here the operations (Ry) and [R4] on p(5) are defined by putting

(R)(X) = {s€S|Ras|NX+#2)}
[Ra](X) = {s€S|Rals] C X}

The satisfaction relation I- may be recovered from this by putting S, s I ¢ iff s € [¢]°. <

Definition 1.11 Let s and s’ be two states in the transition systems S and S’ of type (P, D),
respectively. Then we say that s and s’ are modally equivalent, notation: S,s =p py §', ', if s
and s’ satisfy the same modal formulas, that is, S, s IF ¢ iff §/, " I ¢, for all modal formulas
¢ € MLp(P). <

Flows, trees and streams

In some parts of these notes deterministic transition systems feature prominently.

Definition 1.12 A transition system S = (S, V, R) is called deterministic if each Ry[s| is a
singleton. <

Note that our definition of determinism does not allow R; = @ for any point s. We first
consider the monomodal case.

Definition 1.13 Let P be a set of proposition letters. A deterministic monomodal Kripke
model for this language is called a flow model for P, or a p(P)-flow. In case such a structure is
of the form (w, V, Succ), where Succ is the standard successor relation on the set w of natural
numbers, we call the structure a stream model for P, or a o(P)-stream. <

In case the set D of actions is finite, we may just as well identify it with the set k& =
{0,...,k—1}, where k is the size of D. We usually restrict to the binary case, that is, k = 2.
Our main interest will be in Kripke models that are based on the binary tree, i.e., a tree in
which every node has exactly two successors, a left and a right one.

Definition 1.14 With 2 = {0, 1}, we let 2* denote the set of finite strings of 0s and 1s. We
let € denote the empty string, while the left- and right successor of a node s are denoted by
s-0 and s -1, respectively. Written as a relation, we put

Suce; = {(s,s-1) | s € 2"}

A binary tree over P, or a binary p(P)-tree is a Kripke model of the form (2*, V| Succg, Succy).
<
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Remark 1.15 In the general case, the k-ary tree is the structure (k*, Succo, ..., Succg_1),
where k* is the set of finite sequences of natural numbers smaller than k, and Succ; is the
i-th successor relation given by

Succ; = {(s,s-1) | s € k*}.

A k-flow model is a Kripke model S = (S,V, R) with k£ many deterministic accessibility
relations, and a k-ary tree model is a k-flow model which is based on the k-ary tree. <

In deterministic transition systems, the distinction between boxes and diamonds evapo-
rates. It is then convenient to use a single symbol O; to denote either the box or the diamond.

Definition 1.16 The set MFL(P) of formulas of k-ary Modal Flow Logic in P is given as
follows:

o u=p | Dl LI T[leVe ]| oAe | O

where p € P, and ¢ < k. In case k = 1 we will also speak of modal stream logic, notation:
MSL(P). <

1.2 Game semantics

We will now describe the semantics defined above in game-theoretic terms. That is, we will
define the evaluation game £(§,S) associated with a (fixed) formula £ and a (fixed) LTS S.
This game is an example of a board game. In a nutshell, board games are games in which the
players move a token along the edge relation of some graph, so that a match of play of the
game corresponds to a (finite or infinite) path through the graph. Furthermore, the winning
conditions of a match are determined by the nature of this path. We will meet many examples
of board games in these notes, and in Chapter 5 we will study them in more detail.

The evaluation game £(&,S) is played by two players: Eloise (3 or 0) and Abélard (V or
1). Given a player o, we always denote the opponent of o by . As mentioned, a match of
the game consists of the two players moving a token from one position to another. Positions
are of the form (g, s), with ¢ a subformula of £, and s a state of S.

It is useful to assign goals to both players: in an arbitrary position (¢, s), think of 3 trying
to show that ¢ is true at s in S, and of V of trying to convince her that ¢ is false at s.

Depending on the type of the position (more precisely, on the formula part of the position),
one of the two players may move the token to a next position. For instance, in a position of
the form (O, s), it is I’s turn to move, and she must choose an arbitrary d-successor ¢ of s,
thus making (¢, t) the next position. Intuitively, the idea is that in order to show that O is
true at s, 3 has to come up with a successor of s where ¢ holds. Formally, we say that the set
of (admissible) next positions that 3 may choose from is given as the set {(p,t) | t € Ry[s]}.
In the case there is no successor of s to choose, she immediately loses the game. This is a
convenient way to formulate the rules for winning and losing this game: if a position (¢, $)
has no admissible next positions, the player whose turn it is to play at (¢, s) gets stuck and
immediately loses the game.

This convention gives us a nice handle on positions of the form (p, s) where p is a propo-
sition letter: we always assign to such a position an empty set of admissible moves, but we
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Position Player | Admissible moves

(901\/90275) 3 {(901’8)7(302’5)}
(<P1/\Q02,3> v {(@173)7(90278)}
(Cap, s) 3 [ {(pt) |t € Rygls]}
(Qap, s) vV [ {(pt) |t € Rals]}
(L,s) 3 1%}

(T,s) Y I}

(p,s),s € V(p) v 7]

(p,s),s¢Vp) | 3 |

(p,s),sgVp) | ¥V |©

(p,s),s € V(p) 3 %}

Table 1: Evaluation game for modal logic

make 3 responsible for (p, s) in case p is false at s, and V in case p is true at s. In this way, 3
immediately wins if p is true at s, and V if it is otherwise. The rules for the negative literals
(p) and the constants, 1 and T, follow a similar pattern.

The full set of rules of the game is given in Table 1. Observe that all matches of this
game are finite, since at each move of the game the active formula is reduced in size. (From
the general perspective of board games, this means that we need not worry about winning
conditions for matches of infinite length.) We may now summarize the game as follows.

Definition 1.17 Given a modal formula ¢ and a transition system S, the evaluation game
E(&,S) is defined as the board game given by Table 1, with the set Sf(£) x S providing the
positions of the game; that is, a position is a pair consisting of a subformula of £ and a point
in S. The instantiation of this game with starting point (£, s) is denoted as £(&,S)Q(&, s). <

An instance of an evaluation game is a pair consisting of an evaluation game and a starting
position of the game. Such an instance will also be called an initialized game, or sometimes,
if no confusion is likely, simply a game.

A strategy for a player o in an initialized game is a method that o uses to select his moves
during the play. Such a strategy is winning for o if every match of the game (starting at the
given position) is won by o, provided o plays according to this strategy. A position (¢, s) is
winning for o if 0 has a winning strategy for the game initialized in that position. (Note that
this definition applies to all positions, not only to the ones owned by o.) The set of winning
positions in £(¢,S) for o is denoted as Win, (E(E,S)).

The main result concerning these games is that they provide an alternative, but equivalent,
semantics for modal logic.

» Example to be added

Theorem 1.18 (Adequacy) Let & be a modal formula, and let S be an LTS. Then for any
state s in S it holds that

(&,5) € Wing(€(&,S)) <= S, sl &.
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The proof of this Theorem is left to the reader.

1.3 Bisimulations and bisimilarity

One of the most fundamental notions in the model theory of modal logic is that of a bisimu-
lation between two transition systems.

» discuss bisimilarity as a notion of behavioral equivalence

Definition 1.19 Let S and S’ be two transition systems of the same type (P,D). Then a
relation Z C S x S’ is a bisimulation of type (P,D) if the following hold, for every pair
(s,8') € Z.
(prop) s € V(p) iff s € V/(p), for all p € P;
(forth) for all actions d, and for all ¢t € Ry[s] there is a t’ € R}j[s'] with (¢,t') € Z;
(back) for all actions d, and for all ¢’ € R/[s'] there is a t € Ry[s] with (¢,t') € Z.

Two states s and s’ are called bisimilar, notation: S,s ©pp §', s if there is some bisim-
ulation Z of type (P,D) with (s,s’) € Z. If no confusion is likely to arise, we generally drop
the subscripts, writing ‘<’ rather than ‘©pp’. <

Bisimilarity and modal equivalence

In order to understand the importance of this notion for modal logic, the starting point should
be the observation that the truth of modal formulas is invariant under bisimilarity. Recall
that = denotes the relation of modal equivalence.

Theorem 1.20 (Bisimulation Invariance) Let S and S’ be two transition systems of the
same type. Then
S,seS.,s = S,s=¢,¢

for every pair of states s in'S and s' in S'.

Proof. By a straightforward induction on the complexity of modal formulas one proves that
bisimilar states satisfy the same formulas. QED

But there is much more to say about the relation between modal logic and bisimilarity
than Theorem 1.20. In particular, for some classes of models, one may prove a converse
statement, which amounts to saying that the notions of bisimilarity and modal equivalence
coincide. Such classes are said to have the Hennessy-Milner property. As an example we
mention the class of finitely branching transition systems.

Theorem 1.21 (Hennessy-Milner Property) LetS andS' be two finitely branching tran-
sition systems of the same type. Then

S,s 8,8 < S,s=¢8,¢

for every pair of states s in'S and s’ in S'.
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Proof. The direction from left to right follows from Theorem 1.20. In order to prove the
opposite direction, one may show that the relation = of modal equivalence itself is a bisimu-
lation. Details are left to the reader. QED

This theorem can be read as indication of the expressiveness of modal logic: any differ-
ence in behaviour between two states in finitely branching transition systems can in fact be
witnessed by a concrete modal formula. As another witness to this expressivity, in section 1.5
we will see that modal logic is sufficiently rich to express all bisimulation-invariant first-order
properties. Obviously, this result also adds considerable strength to the link between modal
logic and bisimilarity.

As a corollary of the bisimulation invariance theorem, modal logic has the tree model
property, that is, every satisfiable modal formula is satisfiable on a structure that has the
shape of a tree.

Definition 1.22 A transition system S of type (P,D) is called tree-like if the structure
(S, Ugep Ra) is a tree. <

The key step in the proof of the tree model property of modal logic is the observation
that every transition system can be ‘unravelled’ into a bisimilar tree-like model. The basic
idea of such an unravelling is the new states encode (part of) the history of the old states.
Technically, the new states are the paths through the old system.

Definition 1.23 Let S = (S,V, R) be a transition system of type (P,D). A (finite) path
through S is a nonempty sequence of the form (sg,d1, s1,d2, ..., s,) such that Rg,s;—1s; for
all ¢ with 0 < ¢ < n. The set of paths through S is denoted as Paths(S); we use the notation
Pathss(S) for the set of paths starting at s.

The unravelling of S around a state s is the transition system S, which is coalgebraically
defined as the structure (Pathss(S), &), where the coalgebra map & = (&, (dq | d € D)) is
given by putting

dv(so,di, s1,da,...,8,) = ov(sp),
Ga(so,di, s1,d2, ..., 8n) = {(so,d1,81,...,5n,d,t) € Pathss(S) | Rgsnt}.

Finally, the unravelling of a pointed transition system (S, s) is the pointed structure (S,, s),
where (with some abuse of notation) we let s denote the path of length zero that starts and
finishes at s. <

Clearly, unravellings are tree-like structures, and any pointed transition system is bisimilar
to its unravelling. But then the following theorem is immediate by Theorem 1.20.

Theorem 1.24 (Tree Model Property) Let ¢ be a satisfiable modal formula. Then ¢ is
satisfiable at the root of a tree-like model.
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Bisimilarity game

We may also give a game-theoretic characterization of the notion of bisimilarity. We first give
an informal description of the game that we will employ. A match of the bisimilarity game
between two Kripke models S and S’ is played by two players, 3 and V. As in the evaluation
game, these players move a token around from one position of the game to the next one. In
the game there are two kinds of positions: pairs of the form (s,s’) € S x S’ are called basic
positions and belong to 3. The other positions are of the form Z C S x S’ and belong to V.

The idea of the game is that at a position (s, s), 3 claims that s and s’ are bisimilar, and
to substantiate this claim she proposes a local bisimulation Z C S x S’ (see below) for s and
s’. This relation Z can be seen as providing a set of witnesses for 3’s claim that s and s’ are
bisimilar. Implicitly, 3's claim at a position Z C S x S’ is that all pairs in Z are bisimilar,
so V can pick an arbitrary pair (t,t') € Z and challenge 3 to show that these t and t' are
bisimilar.

Definition 1.25 Let S and S’ be two transition systems of the same type (P,D). Then a
relation Z C S x S’ is a local bisimulation for two points s € S and s’ € ', if it satisfies the
properties (prop), (back) and (forth) of Definition 1.19 for this specific s and s':

(prop) s € V(p) iff s € V'(p), for all p € P;

(forth) for all actions d, and for all t € Ry[s] there is a ¢’ € R),[s'] with (t,t') € Z;

(back) for all actions d, and for all ¢’ € R[s'] there is a t € Rq[s] with (¢,t) € Z. <

Note that a local bisimulation for s and s’ need only relate successors of s to successors of
s'. In particular, the pair (s, s) itself will generally not belong to such a relation. It is easy to
see that a relation Z between two Kripke models is a bisimulation iff Z is a local bisimulation
for every pair (s,s') € Z.

If a player gets stuck in a match of the bisimilarity game, then the opponent wins the
match. For instance, if s and s’ disagree about some proposition letter, then there is no local
bisimulation for s and s’, and so the corresponding position (s, s) is an immediate loss for 3.
Or, if neither s nor s’ has successors, and agree on the truth of all proposition letters, then
3 could choose the empty relation as a local bisimulation, so that V would lose the match at
his next move.

A new option arises if neither player gets stuck: this game may also have matches that
last forever. Nevertheless, we can still declare a winner for such matches, and the agreement
is that 3 is the winner of any infinite match. Formally, we put the following.

Definition 1.26 The bisimilarity game B(S,S’) between two Kripke models S and S’ is the
board game given by Table 2, with the winning condition that finite matches are lost by the
player who got stuck, while all infinite matches are won by 3.

A position (s, s’) is winning for o if o has a winning strategy for the game initialized in
that position. The set of these positions is denoted as Win, (B(S,S’)). <

Also observe that a bisimulation is a relation which is a local bisimulation for each of its
members. The following theorem states that the collection of basic winning positions for 3
forms the largest bisimulation between S and S'.
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Position Player | Admissible moves
(s,s)eSxy8 3 {Z € p(S x 8") | Z is a local bisimulation for s and s}
Z € p(S x5 N Z =A{tt)| (tt)e Z}

Table 2: Bisimilarity game for Kripke models

Theorem 1.27 Let (S,s) and (S',s) be two pointed Kripke models. Then S,s < S',s" iff
(s,s") € Winz(B(S,S)).

Proof. For the direction from left to right: suppose that Z is a bisimulation between S and
S’ linking s and s’. Suppose that 3, starting from position (s, s’), always chooses the relation
Z itself as the local bisimulation. A straightforward verification, by induction on the length
of the match, shows that this strategy always provides her with a legitimate move, and that
it keeps her alive forever. This proves that it is a winning strategy.

For the converse direction, it suffices to show that the relation {(t,t') € S x S" | (¢,t') €
Wing(B(S,S'))} itself is in fact a bisimulation. We leave the details for the reader. QED

Remark 1.28 » The bisimilarity game should not be confused with the bisimulation
game.

<

Bisimulations via relation lifting

Together, the back- and forth clause of the definition of a bisimulation express that the pair
of respective successor sets of two bisimilar states must belong to the so-called FEgli- Milner
lifting ©Z of the bisimulation Z. In fact, the notion of a bisimulation can be completely
defined in terms of relation lifting.

Definition 1.29 Given a relation Z C A x A’, define the relation pZ C pA x pA’ as follows:

oz = {(X,X)| for all x € X there is an 2’ € X’ with (z,2') € Z
& for all ' € X’ there is an x € X with (z,2') € Z}.

Similarly, define, for a Kripke functor K = Kp p, the relation KZ C KA x KA’ as follows:
KZ .= {((m, X), (', X")) | 7 = 7’ and (X4, X};) € pZ for each d € D}.

The relations $Z and KZ are called the liftings of Z with respect to g and K, respectively.
We say that Z C A x A’ is full on B € pA and B’ € pA' if (B,B’) € pZ. <

It is completely straightforward to check that a nonempty relation Z linking two transition
systems S and §' is a local bisimulation for two states s and s’ iff (o(s),0’(s')) € KZ. In
particular, 3’s move in the bisimilarity game at a position (s, s’) consists of choosing a binary
relation Z such that (o(s),0’(s')) € KZ. The following characterization of bisimulations is
also an immediate consequence.
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Proposition 1.30 Let'S and S' be two Kripke coalgebras for some Kripke functor K, and let
Z C 8 x 8" be some relation. Then

Z is a bisimulation iff (0(s),0'(s")) € KZ for all (s,s") € Z. (1)

1.4 Finite models and computational aspects

» complexity of model checking

v

filtration & polysize model property

v

complexity of satisfiability

A\

complexity of global consequence

1.5 Modal logic and first-order logic

» modal logic is the bisimulation invariant fragment of first-order logic

1.6 Complete derivation systems for modal logic
1.7 The cover modality

As we will see now, there is an interesting alternative for the standard formulation of basic
modal logic in terms of boxes and diamonds. This alternative set-up is based on a connective
which turns a set of formulas into a formula. We first restrict attention to the monomodal
case.

Definition 1.31 Let ® be a finite set of formulas. Then V& is a formula, which holds at a
state s in a Kripke model if every formula in ® holds at some successor of s, while at the
same time, every successor of s makes some formula in ® true. The operator V is called the
cover modality. <

It is not so hard to see that the cover modality can be defined in the standard modal
language:

ve=0\/on o2, (2)

where O® denotes the set {Og | ¢ € @}, Things start to get interesting once we realize that
both the ordinary diamond <& and the ordinary box O can be expressed in terms of the cover
modality (and the disjunction):

O
Uy

Ve, T},
Vo v V{p}. (3)

Here, as always, we use the convention that \/ @ = L and Ao =T.

Remark 1.32 Observe that this definition involves the V3&V3 pattern that we know from
the definition of a bisimulation. The fundamental concept is the notion of relation lifting ©
defined in the previous section. In other words, the semantics of the cover modality can be
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expressed in terms of relation lifting. To be more precise, observe that we may think of the
forcing or satisfaction relation I simply as a binary relation between states and formulas.
Then we find that

S,slF Vo iff (ocr(s), ®) € p(IF).

for any pointed Kripke model (S, s) and any finite set ® of formulas. <

Remark 1.33 In the special case where ® = & we find that S, s IF V& iff R[s] = @, that is,
s has no successors. Using this it is easy to see that T = V{T}V V@. <

Given that V and {<,0} are mutually expressible, we obtain an expressively equivalent
language MLy if we replace O and < with the cover modality. As we will see further on
it will be convenient for us to use a format for this language in which not only the cover
modality, but also the disjunction and conjunction connectives take finite sets of formulas
as their argument. That is, rather then working with disjunction and conjunction as binary
connectives, we will work with their finitary versions. This perspective also allows us to omit
the constants 1 and T from the basic syntax, since we may consider them as abbreviations:
l:=V@and T :=A\0o.

Definition 1.34 The formulas of the language MLy are given by the following grammar:
pu=p|D[ Ve[ A®]|VE

where p is a propositional variable, and & C MLy . <

Proposition 1.35 The languages ML and MLy are equally expressive.

Proof. Immediate by (2) and (3). QED

The real importance of the cover modality is that it allows us to almost completely elim-
inate the Boolean conjunction. This remarkable fact is based on the following modal dis-
tributive law. Recall from Definition 1.29 that a relation Z C A x A’ is full on A and A’ if
(A, A") € pZ, or in other words: A C Dom(Z) and A’ C Ran(Z).

Proposition 1.36 (Binary Modal Distributive Law) Let ® and @' be two sets of for-
mulas. Then the following two formulas are equivalent:

VOAVPY = \/{VFZ | Z is full on ® and @'}, (4)
where, given a relation Z C ® x &', we define
Pz ={en¢' | (0,¢) € Z}.

Proof. For the direction from left to right, suppose that S, s |F V® A V®'. Let Z C & x &'
consist of those pairs (¢, ¢’) such that the conjunction p A ¢’ is true at some successor ¢ of s.
It is then straightforward to verify that Z is full on ® and &', and that S, s IF VI'z.

The converse direction follows fairly directly from the definitions. QED
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As a corollary of Proposition 1.36 we can restrict the use of conjunction in modal logic to
that of a special conjunction connective ® which may only be applied to a pair consisting of
a set of literals and a V-formula (or, a certain set of V-formulas in the polymodal case). The
intended reading of the bullet operator is as follows:

aed = (Aa)AVO.

Definition 1.37 Fix a finite set P of proposition letters. Then the set DML(P) of disjunctive
monomodal formulas in P is given by the following grammar:

o =T | VO | aed,
where « is a finite set of literals over P and ® is a finite set of formulas in DML(P). <

Note that the proposition letters in P and their negations themselves do not qualify as
disjunctive formulas. However, these formulas are easily seen to be equivalent to disjunctive
formulas: for instance, we have ¢ = {¢} ¢ {T} V {{} e &, for any literal .

Remark 1.38 In the above definition we do not need to list the formula 1 explicitly as a
disjunctive formula, since we can still see it as an abbreviation: L :=\/@. This is different
for the formula T, however. Since we no longer have /\ as a connective, we cannot use it to
define T. For this reason we have added T as a primitive constant. <

The following theorem states that every modal formula can be rewritten into an equivalent
disjunctive normal form.

Theorem 1.39 Let P be a set of proposition letters. Then there are effective ways to trans-
form an arbitrary formula in ML(P) into an equivalent formula in DML(P), and vice versa. As
a corollary, the languages ML(P) and DML(P) are expressively equivalent.

We leave the proof of this result as an exercise to the reader.

Remark 1.40 In the polymodal case we adapt the definition as follows. Let & = {®; | d €
D} be a D-indexed family of formula sets. Then we write Vp® := A, .p Vq®q, where Vg4
is the cover modality associated with the action d. The following grammar defines the set
DMLp (P) of disjunctive polymodal formulas in D and P

o =T | VO | aeVpd,

where o« C,, Lit(P) and @ is an D-indexed family of finite sets of DMLp (P)-formulas. One may
then formulate and prove a polymodal version of Theorem 1.39, relating MLp and DMLp. <
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Notes

Modal logic has a long history in philosophy and mathematics, for an overview we refer to
Blackburn, de Rijke and Venema [4]. The use of modal formalisms as specification languages
in process theory goes back at least to the 1970s, with Pratt [25] and Pnueli [24] being two
influential early papers.

The notion of bisimulation, which plays an important role in modal logic and process
theory alike, was first introduced in a modal logic context by van Benthem [3], who proved
that modal logic is the bisimulation invariant fragment of first-order logic. The notion was
later, but independently, introduced in a process theory setting by Park [23]. At the time
of writing we do not know who first took a game-theoretical perspective on the semantics of
modal logic. The cover modality V was introduced independently by Moss [19] and Janin &
Walukiewicz [12].

Readers who want to study modal logic in more detail are referred to Blackburn, de Rijke
and Venema [4] or Chagrov & Zakharyaschev [7].

Exercises

Exercise 1.1 Prove Theorem 1.18.

Exercise 1.2 Prove that the Hennessy-Milner theorem (Theorem 1.21) also holds if only one
of the two structures is finitely branching.

Exercise 1.3 (bisimilarity game) Consider the following version B, (S,S’) of the bisimi-
larity game between two transition systems S and S'. Positions of this game are of the form
either (s,¢',V, ), (s,8,3,a) or (Z,a), withs € S, s € §', Z C S xS and « either a natural
number or w. The admissible moves for 3 and V are displayed in the following table:

Position Player | Admissible moves
(s,8,V,a) v {(s,¢,3,8) | B < a}
(s,s',3,) 3 {(Z,a) | Z is a local bisimulation for s and s’ }

(Z,«) v {(s,¢,V,a) | (s,5) € Z}

Note that all matches of this game have finite length.

We write S, s €, S, s’ to denote that 3 has a winning strategy in the game B, (S,S’)
starting at position (s,s’,V,a). It is not hard to see that S, s <, S, iff S,s < §/, s’ for all
k<w.

(a) Give concrete examples such that S, s €, §',s' but not S,s & §', 4.
(Hint: think of two modally equivalent but not bisimilar states.)

(b) Let k£ > 0 be a natural number. Prove that, for all S, s and §', s’
S,s <. S,s = S,s=,5,5.

Here =;. denotes the modal equivalence relation with respect to formulas of modal depth
at most k. Here we use a slightly nonstandard notion of modal depth, defined as follows:
d(L),d(T) =0, d(p),d(p) :==1for p € P, d(p AN),d(¢ V 1) := max(d(p),d(y))), and
d(Cp),d(Op) := 1+ d(p).
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(c) Let S and S’ be finitely branching transition systems. Prove directly (i.e., without using
part (b)) that (i) = (ii), for all s € S and s’ € S":

(i) S,s &, 5,¢
(i) S,s & 9,

(d)* Does the implication in (c) hold in the case that only one of the two transition systems
is finitely branching?

Exercise 1.4 Let ® and © be finite sets of formulas. Prove that
vV@eu{Vve}) = \/{Vv(eue) | z#6 ce}

Exercise 1.5 Prove Theorem 1.39.



2 The modal p-calculus: basics

This chapter is a first introduction to the modal p-calculus. We define the language, discuss
some syntactic issues, and then proceed to its game-theoretic semantics. As a first result, we
prove that the modal p-calculus is bisimulation invariant, and has a strong, ‘bounded’ version
of the tree model property. We then provide some basic information concerning the main
complexity measures of u-calculus formulas: size and alternation depth.

To introduce the formalism, we start with a simple example.

Example 2.1 Consider the formula (d*)p from propositional dynamic logic. By definition,
this formula holds at those points in an LTS S from which there is a finite Rg-path, of
unspecified length, leading to a state where p is true.

We leave it for the reader to prove that

S,sI-{d")p <> (pV (d){d")p)

for any pointed transition system (S, s) (here we write (d) rather than <4). Informally, one
might say that (d*)p is a fized point of the formula p V (d)z, or a solution of the ‘equation’

x=pV(d)z. (5)

One may show, however, that (d*)p is not the only fixpoint of (5). If we let ooy denote
a formula that is true at those states of a transition system from which an infinite d-path
emanates, then the formula (d*)p V co4 is another fixed point of (5).

In fact, one may prove that the two mentioned fixpoints are the smallest and largest
possible solutions of (5), respectively. <

As we will see in this chapter, the modal p-calculus allows one to explicitly refer to such
smallest and largest solutions. For instance, as we will see further on, the smallest and largest
solution of the ‘equation’ (5) will be written as px.p V (d)z and va.p V (d)z, respectively.
Generally, the basic idea underlying the modal p-calculus is to enrich the language of basic
modal logic with two explicit fixpoint operators, p and v, respectively. Syntacticlly, these
operators behave like quantifiers in first-order logic, in the sense that the application of a
fixpoint operator pux to a formula ¢ binds all (free) occurrences of the proposition letter x
in ¢. The word ‘fixpoint’ indicates that semantically, the formulas px ¢ and v ¢ are both
‘solutions’ to the ‘equation’ x = p(z), in the sense that, writing = for semantic equivalence,
we have both

HT @

[ o/ ]
and vxp Dive o (6)

plve o/,
where [uz.p/z] denotes the operation of substituting ux ¢ for every free occurrence of z. In
other words, both uz ¢ and vz ¢ are equivalent to their respective unfoldings, p[ux ¢/z] and
elveg/al.

To arrive at this semantics of modal fixpoint formulas one can take two roads. In Chapter 3
we will introduce the algebraic semantics of ux ¢ and vx ¢ in an LTS S, in terms of the least
and greatest fixpoint, respectively, of some algebraically defined meaning function. For this
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purpose, we will consider the formula ¢ as an operation on the power set of (the state space of)
S, and we have to prove that this operation indeed has a least and a greatest fixpoint. As we
will see, this formal definition of the semantics of the modal p-calculus may be mathematically
transparent, but it is of little help when it comes to unravelling and understanding the actual
meaning of individual formulas. In practice, it is much easier to work with the evaluation
games that we will introduce in this chapter.

This framework builds on the game-theoretical semantics for ordinary modal logic as
described in Subsection 1.2, extending it with features for the fixpoint operators and for the
bound variables of fixpoint formulas (such as z in the formula px.pV Cx). The key difference
lies in the fact that when a match of an evaluation game reaches a position of the form (z, s),
with x a bound variable, then an equation such as (5) is used to unfold the variable z into its
associated formula (in the example, the formula p VvV <x).

As a consequence, the flavour of these games is remarkably different from the evaluation
games we met before. Recall that in evaluation matches for basic modal formulas, the formula
is broken down, step by step, until we can declare a winner of the match. From this it follows
that the length of such a match is bounded by the length of the formula. Evaluation matches
for fixpoint formulas, on the other hand, can last forever, if some fixpoint variables are
unfolded infinitely often. Hence, the game-theoretic semantics for fixpoint logics takes us to
the area of infinite games. In this Chapter we keep our treatment of infinite games informal,
in Chapter 5 the reader can find precise definitions of all notions that we introduce here.

2.1 Basic syntax
Formulas

As announced already in the previous chapter, in the case of fixpoint formulas we will usually
work with formulas in positive normal form in which the only admissible occurrences of the
negation symbol is in front of atomic formulas.

Definition 2.2 Given a set D of atomic actions, we define llection uMLp of (poly-)modal
fizpoint formulas as follows:

pu=T | Llp|p| (@Ag) | (eVe) | Cap | Oap | pry | vre

where p and x are propositional variables, and d € D. There is a restriction on the formation
of the formulas uz ¢ and vx @, namely, that the formula ¢ is positive in x. That is, all
occurrences of x in ¢ are positive, or, phrasing it yet differently, no occurrence of x in ¢ may
be in the form of the negative literal Z.

In case the set D of atomic actions is a singleton, we will simply speak of the modal
pu-calculus, notation: pML.

The syntactic combinations ux and v are called the least and greatest fixrpoint operators,
respectively. We use the symbols 17 and A to denote either p or v, and we define 71 := v and
V= U. <

A formula of the form nx ¢ is called a fixpoint formula, and, more specifically, a pu-formula
if n = p and a v-formula if n = v. Furthermore, conjunctions and disjunctions will sometimes
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be called boolean pML-formulas, and formulas of the form ©gzp or Oy will sometimes be called
modal.

Convention 2.3 In order to increase readability by reducing the number of brackets, we
adopt some standard scope conventions. We let the unary modal connectives, & and O, bind
stronger than the binary propositional connectives A, V and —, and use associativity to the
left for the connectives A and V. As an example, we will abbreviate the formula (Op A q) as
Op A gq.

Furthermore, we use ‘dot notation’ to indicate that the fixpoint operators preceding the
dot have maximal scope. For instance, up.Op A g denotes the formula pp (Op A ¢), and not
the formula ((up Op) A q). As a final example, px.p VvV Ox V y V vy.q A O(x V y) stands for

px (((ﬁ Vv Oz) Vy) Vvy(gAD(zV y)))‘

Remark 2.4 An alternative definition of the language of the modal p-calculus makes a dis-
tinction between propositional variables and proposition letters. Formulas are now defined as
follows:

pu=T [ L]p|Dlz] (A | (Ve | Cap | Oap | pre | voe

where p is a proposition letter, z a propositional variable, and d is an atomic action. In this
framework, only propositional variables can be bound. <

Length and syntax tree of a formula

There are various ways to measure a p-calculus formula. The most basic measure of a formula
is its length, which basically corresponds to its number of symbols.

Definition 2.5 Given a p-calculus formula &, we define its length |€|* inductively as follows:

|| =1 if ¢ is atomic

oo ® @1]" = 1+ |pol* +[e1]* where ® € {A,V}
|@<p|e = 1+ ]go|Z where © € {<&, 0}
nz.plt = 14l where 1) € {y, v}

<

We assume that the reader is familiar with the concept of the syntax tree or construction
tree T¢ of a formula £. We will not give a formal definition of this structure, but confine
ourselves to an example: in Figure 2.1 we display the syntax tree of the p-calculus formula
px.(pV <ox) Vy.(gAO(z Vy)). Note that the length of a formula corresponds to the number
of nodes of its syntax tree, and that an occurrence of a certain symbol in a formula may be
associated with some node in the formula’s syntax tree that is labelled with that symbol;
occurrences of literals correspond to leaves of the tree.
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e

Figure 1: A syntax tree

Subformulas and free/bound variables
The concepts of subformula and proper subformula are extended from basic modal logic to

the modal p-calculus in the obvious way.

Definition 2.6 We define the set Sf(§) of direct subformulas of a formula £ € pML via the
following case distinction:

Sfo(€) = o if ¢ € At(P)

Sfofo®&) = {&,&}  where ® € {A,V}
Sfo(V&) = {&} where O € {&,0}
Sfo(nz.o) = {&o} where n € {u, v},

and we write ¢ <p £ if ¢ € Sfy(€).

For any formula £ € uML, Sf(£) is the least set of formulas which contains £ and is closed
under taking direct subformulas. Elements of the set Sf(§) are called subformulas of &, and
we write ¢ <& (¢ <) if ¢ is a subformula (proper subformula, respectively) of &.

The (subformula) dag of a formula ¢ is defined as the directed acyclic graph (Sf (&), >0),
where > is the converse of the direct subformula relation <. <

» Give an example comparing the syntax tree of a formula to its subformula dag.

Syntactically, the fixpoint operators are very similar to the quantifiers of first-order logic
in the way they bind variables.
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Definition 2.7 Fix a formula . The sets F'V () and BV () of free and bound variables of
@ are defined by the following induction on ¢:

FV (1) = O BV(1) = O

FV(T) = O BV(T) = O

FV(p) = {p} BV (p) = O

FV(p) = {p} BV (p) = o

FV(pvy) == FV(p)UFV(y) BV(eVvi) = BV(e)UBV ()
FV(eny) = FV(p)UFV () BV(eAy) = BV(p)UBV(¢)
FV(Cap) = FV(p) BV(Cap) = BV(p)
FV(Oap) = FV(p) BV(Bap) = BV(y)
FV(nr.) = FV(e)\{z} BV(nz.p) = BV(p)U{z}

For a finite set of propositional variables P, we let uMLp(P) denote the set of uMLp-formulas
@ of which all free variables belong to P. <

Formulas like z V pz.((pV ) A Ovz.$x) may be well formed, but in practice they are very
hard to read and to work with. In the sequel we will often work with formulas in which every
bound variable uniquely determines a subformula where it is bound, and almost exclusively
with formulas in which no variable has both free and bound occurrences in .

Definition 2.8 A formula ¢ € pMLp is tidy if FV (p)N BV (¢) = &, and clean if in addition
with every bound variable x of ¢ we may associate a unique subformula of the form nz.4. In
the latter case we let v, = n,2.0, denote this unique subformula. <

Convention 2.9 As a notational convention, we will use the letters p,q,r,... and z, v, 2,

to denote, respectively, the free and the bound propositional variables of a uMLp-formula.
This convention can be no more than a guideline, since the division between bound and free
variables may not be the same for a formula and its subformulas. For instance, the variable
x is bound in px.p V Oz, but free in its subformula p Vv Ox.

Remark 2.10 In the alternative definition of the language of the modal u-calculus as dis-
cussed in Remark 2.4, just like in first-order logic one makes a difference between open for-
mulas (which may contain free variables) and sentences (which may not). Observe that the
sentences correspond to the tidy formulas in our framework. For instance, ux (p V <x) is
a sentence, px (y V <Ox) is an open formula, and up (x V Op) is not a well-formed formula
(assuming that p is a proposition letter, and z is a variable). <

Substitution & unfolding

The syntactic operation of substitution is ubiquitous in any account of the modal p-calculus,
first of all because it features in the basic operation of unfolding a fixpoint formula. As
usual in the context of a formal language featuring operators that bind variables, the precise
definition of a substitution operation needs some care. In particular, we need to protect the
substitution operation from variable capture.
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Example 2.11 To give a concrete example, suppose that we would naively define a sub-
stitution operation ¥ /x by defining ¢[1)/z]| to be the formula we obtain from the formula
© by replacing every free occurrences of x with the formula 1. Now consider the formula
©(q) = up.q V Op expressing the reachability of a g-state in finitely many steps. If we substi-
tute p for ¢ in ¢, we would expect the resulting formula to express the reachability of a p-state
in finitely many steps, but the formula we obtain is ¢[p/q] = up.pV Op, which says something
rather different (in fact, it happens to be equivalent to ). Even worse, the substitution [p/q|
would produce a syntactic string ¢[p/q] = pup.pV <p which is not even a well-formed formula.
<

To avoid such anomalies, for the time being we shall only consider substitutions &/
applied to formulas where £ is free for x.

Definition 2.12 Let £ and x be respectively a modal u-calculus formula and a propositional
variable. We define what it means for £ to be free for x in a formula ¢ by the following
induction on the complexity of ¢:

e if  is an atomic formula then £ is free for z in ¢, unless ¢ = T';

o ¢ is free for z in g ® (py if it is free for x in both ¢y and @q;
o  is free for x in O if it is free for = in ¥;
o {isfreeforx innyyif x & FV(nyy) orif y & FV(E) and £ is free for x in 9.

<

Informally, £ is free for x in ¢ if ¢ is positive in  and no free variable in & gets bound,
after substitution, by a fixpoint operator in ¢. A special case of this, that we shall encounter
frequently, is the following.

Proposition 2.13 Let p, & and x be respectively two modal p-calculus formulas and a propo-
sitional variable, such that FV(§) N BV (p) C {x}. Then & is free for x in ¢.

Definition 2.14 Let {¢, | z € Z} be a set of modal p-calculus formulas, indexed by a set of
variables Z, let ¢ € puML be positive in each z € Z, and assume that each &, is free for z in .
We inductively define the simultaneous substitution [€,/z | z € Z] as the following operation
on pML:

, fo=2z€Z
ple-/z |2 € Z] = {fp if:iisatomicbutgng
(VY)[E./2 | 2 € Z] = OYlg:/z] z € Z]
(po®@1)l&:/2]2€ 2] = @olé/z|z€Z]@pilE./2] 2z € Z]
(mr)l&z/z12€ 2] = nziplé:/z]z€ Z\{x}]

Strictly speaking, this condition is not needed. In particular, as a separate atomic case of our inductive
definition, we could define the outcome of the substitution p[¢/p] to be the negation of the formula v (suitably
defined). However, we will only need to look at substitutions ¢[t)/z] where we happen to know that ¢ is
positive in z. As a result, our simplified definition does not impose a real restriction.
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In case Z is a singleton, say Z = {z}, we will simply write ¢[¢./z], or ¢(£) if z is understood.
<

» Add some examples

Remark 2.15 In case v is not free for some z € Z in &, we take a standard approach
using alphabetical variants. Roughly, two formulas are alphabetical variants if we can obtain
one from the other by renaming bound variables. We then define a correct version of the
substitution £[¢,/z | z € Z] as follows: first we take some canonically chosen alphabetical
variant & of € such that each ), is free for z in &', and then we set

W,z |z € Z):i=E /2| 2 € Z).

However, in almost all situations that we will encounter we will only need perform sub-
stitutions that are ‘safe’ in the sense that the substituted formula is free for the variable it
replaces. This means that generally we may avoid taking alphabetical variants. Situations
where this is not the case will be explicitly marked. The reason for taking such care is that
the operation of taking alphabetical variants is not completely harmless when it comes to size
issues. We will come back to this matter in more detail later. <

The following proposition is a well known observation in areas where syntax is used that
features variable binding. Note however that our version below is a bit subtler than usual
since we do not allow the renaming of bound variables.

Proposition 2.16 Let ¢, x and p be p-calculus formulas, and let x and y be distinct variables
such that x is free in @ but not in p. Furthermore, assume that x is free for x in ¢ and that
p is free for y in p[x/xz]. Then p is free for y in both ¢ and x, x[p/y] is free for x in [p/y],
and we have

whx/xllo/yl = elp/yll(xlp/y]) /] (7)
Proof. The proposition can be proved by a straightforward but rather tedious induction on
the complexity of . We omit details. QED
Unfolding

The reason that the modal p-calculus, and related formalisms, are called fixpoint logics is
that, for n = p/v, the meaning of the formula nz.x in a model S is given as the least/greatest
fizpoint of the semantic map expressing the dependence of the meaning of x on (the meaning
of) the variable . As a consequence, the following equivalence lies at the heart of semantics
of uML:

nz.x = x[nz.x/z] (8)

In words: every formula is equivalent to its unfolding.

Definition 2.17 Given a formula nz.x € puML, we call the formula unf(§) := x[nz.x/x] its
unfolding. <
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Remark 2.18 Unfolding is the central operation in taking the closure of a formula that we are
about to define. Unfortunately, the collection of clean formulas is not closed under unfolding
(unless we take alphabetical variants). Consider for instance the formula ¢(p) = vq.Oq A p,
then we see that the formula up.p is clean, but its unfolding ¢[up.¢/p] = vq.CqgA upvq.OqAp
is not. Furthermore, our earlier observation that the naive version of substitution may produce
‘formulas’ that are not well-formed applies here as well. For instance, with x denoting the
formula p A vp.O(x V p), naively unfolding the (untidy) formula pz.y would produce the
ungrammatical p A vp.O ((,ua:.ﬁ Avp.O(zVp))V p). <

Fortunately, the condition of tidyness guarantees that we may calculate unfoldings without
moving to alphabetical variants, since we can prove that the formula nz.y is free for = in y,
whenever nx.y is tidy. In addition, tidyness is preserved under taking unfoldings.

Proposition 2.19 Let nz.x € uML be a tidy formula. Then

1) nx.x is free for x in x;
2) x[nz.x/x] is tidy as well.

Proof. For part 1), take a variable y € FV(nz.x). Then obviously y is distinct from =z,
while y ¢ BV (nz.x) by tidyness. Clearly then we find y & BV (x); in other words, x has no
subformula of the form Ay.y. Hence it trivially follows that nx.y is free for z in x.

Part 2) is immediate by the following identities:

FV(x[nz.x/z]) (FV(x)\{=z})UFV(nz.x) = FV(nr.x)
BV (x[nz.x/z]) = BV(x)UBV(nz.x) = BV(nz.x)

which can easily be proved. QED

Dependency order

An important role in the theory of the modal p-calculus is played by a certain order <¢ on
the bound variables of a formula £, with x < y indicating that y is ‘more significant’ than x,
in the sense that the meaning of 2/, is (in principle) dependent on the meaning of y/d,. The
key situation where this happens is when y occurs freely in é,. Observe that this can only be
the case if §, < dy, so that the relation ‘y occurs freely in ¢,” does not have any cycles, and
thus naturally induces a partial order.

Definition 2.20 Given a clean formula {, we define a dependency or subordination order <
on the set BV (&), saying that y ranks higher than x if x <¢ y. The relation <¢ is defined as
the least partial order containing all pairs (x,y) such that y <6, < d,. <

2.2 Game semantics

For a definition of the evaluation game of the modal p-calculus, fix a clean formula £ and an
LTS S. Basically, the game £(¢,S) for £ a fixpoint formula is defined in the same way as for
plain modal logic formulas.
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Definition 2.21 Given a clean modal p-calculus formula & and a transition system S, we
define the evaluation game or model checking game E(,S) as a board game with players 3
and V moving a token around positions of the form (¢, s) € Sf(§) x S. The rules, determining
the admissible moves from a given position, together with the player who is supposed to make
this move, are given in Table 3.

As before, £(,S)Q(E, s) denotes the instantiation of this game where the starting position
is fixed as (¢, s). <

One might expect that the main difference with the evaluation game for basic modal for-
mulas would involve the new formula constructors of the p-calculus: the fixpoint operators.
Perhaps surprisingly, we can deal with the fixpoint operators themselves in the most straight-
forward way possible, viz., by simply stripping them. That is, the successor of a position of
the form (nx.d, s) is simply obtained as the pair (¢, s). (In section 2.5 we present an alternative
version in which the formula nz § is replaced with its unfolding). Since this next position is
thus uniquely determined, the position (nz.d, s) will not be assigned to either of the players.

The crucial difference lies in the treatment of the bound variables of a fixpoint formula &.
Previously, all positions of the form (p, s) would be final positions of the game, immediately
determining the winner of the match, and this is still the case here if p is a free variable.
However, at a position (z, s) with z bound, the fixpoint variable x gets unfolded; this means
that the new position is given as (d,,s), where 1,x.0, is the unique subformula of £ where
x is bound. Note that for this to be well defined, we need £ to be clean. The disjointness
of FV (&) and BV (§) ensures that it is always clear whether a variable is to be unfolded or
not, and the fact that bound variables are bound by unique occurrences of fixpoint operators
guarantees that ¢, is uniquely determined. Finally, since in this case the next position is
also completely determined by the current one, positions of the form (z,s) with z bound are
assigned to neither of the players.

Position Player | Admissible moves
(¢1V p2,8) 3 {(e1,8), (w2, 8)}
(01 A 2, 5) Vo [ {(e1:8), (p2,8)}
(Cap,s) 3 | {e.h)| 2 € oals)}
(Dap, s) Vo | {(et) |t €aals)}
(L,s) 3 %)

(T,s) v %]

(p,s), with p e FV (&) and s € V(p) v @

(p,s), with p e FV (&) and s € V(p) 3 7]

(p,s), with p e FV (&) and s € V(p) 3 %)

(P, s), with p € FV(§) and s & V(p) v %)

Enmmﬁw, s) - 0z,9)}

|
(et Yatn)
—~
=2
8
w0
~—
—

z,s), with x € BV (§)

Table 3: Evaluation game for modal fixpoint logic
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Example 2.22 Let S = (S, R, V) be the Kripke model based on the set S = {0, 1,2}, with
R = {(0,1),(1,1),(1,2),(2,2)}, and V given by V(p) = {2}. Now let £ be the formula
nz.p V Oz, and consider the game £(¢,S) initialized at (€, 0).

The second position of any match of this game will be (pV Oz, 0) belonging to 3. Assuming
that she wants to win, she chooses the disjunct Ox since otherwise p being false at 0 would
mean an immediate loss for her. Now the position (Oz,0) belongs to V and he will make the
only move allowed to him, choosing (x,1) as the next position. Here an automatic move is
made, unfolding the variable x, and thus changing the position to (pV Oz, 1). And as before,
3 will choose the right disjunct: (Oz,1).

At (Oz, 1), V does have a choice. Choosing (z,2), however, would mean that 3 wins the
match since p being true at 2 enables her to finally choose the first disjunct of the formula
pV Ox. So V chooses (z,1), a position already visited by the match before.

This means that these strategies force the match to be infinite, with the variable x un-
folding infinitely often at positions of the form (z,1), and the match taking the following
form:

(£,0)(p Vv Oz,0)(0x,0)(x,1)(p vV Oz, 1)(Bx, 1)(x, 1)(p V Ox, 1) . ..

So who is declared to be the winner of this match? This is where the difference between
the two fixpoint operators shows up. In case n = u, the above infinite match is lost by 3
since the fixpoint variable that is unfolded infinitely often is a u-variable, and u-variables are
to be unfolded only finitely often. In case n = v, the variable unfolded infinitely often is a
v-variable, and this is unproblematic: 3 wins the match. <

The above example shows the principle of unfolding at work. Its effect is that matches
may now be of infinite length since formulas are no longer deconstructed at every move of
the game. Nevertheless, as we will see, it will still be very useful to declare a winner of such
an infinite game. Here we arrive at one of the key ideas underlying the semantics of fixpoint
formulas, which in a slogan can be formulated as follows:

v means unfolding, y means finite unfolding.

Giving a more detailed interpretation to this slogan, in case of a unique variable that is
unfolded infinitely often during a match 7, we will declare 3 to be the winner of « if this
variable is a v-variable, and V in case we are dealing with a u-variable. But what happens in
case that various variables are unfolded infinitely often? As we shall see, in these cases there
is always a unique such variable that ranks higher than any other such variable.

Definition 2.23 Let £ be a clean uMLp-formula, and S a labelled transition system. A match
of the game £(¢,S) is a (finite or infinite) sequence of positions

™= (901'7 Si)i<f€

(where k is either a natural number or w) which is in accordance with the rules of the
evaluation game — that is, 7 is a path through the game graph given by the admissibility
relation of Table 3. A full match is either an infinite match, or a finite match in which the
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player responsible for the last position got stuck. In practice we will always refer to full
matches simply as matches. A match that is not full is called partial.

Given an infinite match 7, we let Unf°°(w) C BV (£) denote the set of variables that are
unfolded infinitely often during . <

Proposition 2.24 Let £ be a clean uMLp-formula, and S a labelled transition system. Then
for any infinite match w of the game E(E,S), the set Unf(m) has a highest ranking member,
in terms of the dependency order of Definition 2.20.

Proof. Since 7 is an infinite match, the set U := Unf°°(7) is not empty. Let y be an element
of U which is mazimal (with respect to the ranking order <¢) — such an element exists since
U is finite. We claim that

from some moment on, 7 only features subformulas of ¢,. (9)

To prove this, note that since y is <¢-maximal in U, there must be a position in 7 such that
y is unfolded to d,, while no variable z >¢ y is unfolded at any later position in w. But
then a straightforward induction shows that all formulas featuring at later positions must be
subformulas of J,: the key observation here is that if z < 4, unfolds to d., and by assumption
z#¢y, then it must be the case that J, < d,.

As a corollary of (9), we claim that

y is in fact the maximum of U (with respect to <¢). (10)

To see this, suppose for contradiction that there is a variable x € U which is not below y.
It follows from (9) that d, < d,, and without loss of generality we may assume z to be such
that d, is a mazimal subformula of ¢, such that « Z¢ y (in the sense that z <¢ y for all z € U
with §, <9,.) In particular then we have y ¢ FV (d,). But since y is unfolded infinitely often,
there must be a variable z € FV(d,) which allows 7 to ‘leave’ ¢, infinitely often; this means
that z € U, 0, < 6, but 0, € d,. From this it is immediate that x <¢ z, while from z € U
and (9) we obtain §, < d,. It now follows from our maximality assumption on x that z <¢ y.
But then by transitivity of <, we find that <, y indeed. In other words, we have arrived
at the desired contradiction.

This shows that (10) holds indeed, and from this the Proposition is immediate. QED

Given this result, there is now a natural formulation of the winning conditions for infinite
matches of evaluation games.

Definition 2.25 Let £ be a clean uMLp-formula. The winning conditions of the game £(&,S)
are given in Table 4. <

We can now formulate the game-theoretic semantics of the modal p-calculus as follows.

Definition 2.26 Let £ be a clean formula of the modal y-calculus, and let S be a transition
system of the appropriate type. Then we say that £ is (game-theoretically) satisfied at s,
notation: S, s I, £ if (£, 5) € Winz(€(¢,S)). <
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3 wins 7 V wins 7
m is finite V got stuck 3 got stuck
7 is infinite | max(Unf° (7)) is a v-variable | max(Unf° (7)) is a p-variable

Table 4: Winning conditions of £(&,S)

Remark 2.27 As mentioned we have kept this introduction to evaluation games for fixpoint
formulas rather informal, referring to Chapter 5 for a more rigorous discussion of infinite
games. Nevertheless, we want to mention already here that evaluation games, on the ground
of being so-called parity games, have two very useful properties that make them attractive
to work with. To start with, every evaluation game is determined in the sense that every
position is winning for exactly one of the two players. And second, one may show that winning
strategies for either player of an evaluation game, can always be assumed to be positional,
that is, do not depend on moves made earlier in the match, but only on the current position.
Combining this, evaluation games enjoy positional determinacy; that is, every position (¢, s)
is winning for exactly one of the two players, and each player II € {3,V} has a positional
strategy frr which is winning for the game £(&,S)Q(¢p,s) for every position (p,s) that is
winning for II. <

Remark 2.28 Observe that we have defined the game-theoretic semantics for clean formula
only. In the next section we define an alternative version of the evaluation game which works
for arbitrary tidy formulas.

It is certainly possible to extend this definition to arbitrary fixpoint formulas; a straight-
forward approach would be to involve the construction tree of a non-clean formula &, and
redefine a position of the evaluation game £(,S) to be a pair, consisting of a node in this
construction tree and a point in the Kripke structure. Alternatively, one may work with a
clean alphabetical variant of the formula &; once we have given the algebraic semantics for
arbitrary formulas, it is not hard to show that in that semantics, alphabetic variants are
equivalent. <

2.3 Examples

Example 2.29 As a first example, consider the formulas nx.pV z, and fix a Kripke model S.
Observe that any match of the evaluation game £(nx.pVz,S) starting at position (nz.pVz, s)
immediately proceeds to position (p V x, s), after which 3 can make a choice. In case 7 is the
least fixpoint operator, 7 = u, we claim that

S,s kg prpVaiff s € V(p).

For the direction from right to left, assume that s € V(p). Now, if 3 chooses the disjunct
p at the position (s,p V z), she wins the match because V will get stuck at (s,p). Hence
s € Wing(E(pz.p V z,S)).

On the other hand, if s ¢ V(p), then 3 will lose if she chooses the disjunct p at position
(s,pV x). So she must choose the disjunct  which then unfolds to p V x so that 3 is back
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at the position (s,pV z). Thus if 3 does not want to get stuck, her only way to survive is to
keep playing the position (s, ), thus causing the match to be infinite. But such a match is
won by V since the only variable that gets unfolded infinitely often is a p-variable. Hence in
this case we see that s ¢ Winz(E(vz.p V z,S)).

If on the other hand we consider the case where n = v, then 3 can win any match:

S,slFgva.pV .

It is easy to see that now, the strategy of always choosing the disjunct x at a position of the
form (s,p V x) is winning. For, it forces all games to be infinite, and since the only fixpoint
variable that gets ever unfolded here is a v-variable, all infinite matches are won by 4.
Concluding, we see that pux.p V x is equivalent to the formula p, and vz.p V x, to the
formula T. <

Example 2.30 Now we turn to the formulas pyx.Ox and va.Ox. First consider how a match
for any of these formulas proceeds. The first two positions of such a match will be of the
form (nz.Ow, s)(Cw, s), at which point it is I’s turn to make a move. Now she either is stuck
(in case the state s has no successor) or else the next two positions are (z,t)(<x, t) for some
successor t of s, chosen by 3. Continuing this analysis, we see that there are two possibilities
for a match of the game &(nz.Cx, S):

1. the match is an infinite sequence of positions
(7755030, 80)(023, 50)(337 51)(<>$’ 51)(177 52) ce
corresponding to an infinite path soRsiRseR ... through S.

2. the match is a finite sequence of positions
(nz. O, 50) (O, s0) (@, 51)(Cw, 51) . .. (O, sp)
corresponding to a finite path sgRs1 R ... s; through S, where s; has no successors.

Note too that in either case it is only 3 who has turns, and that her strategy corresponds to
choosing a path through S. From this it is easy to derive that

e ux. <O is equivalent to the formula 1,

¢ S, sk, va.Ox iff there is an infinite path starting at s. <

» Until operator

The examples that we have considered so far involved only a single fixpoint operator. We
now look at an example containing both a least and a greatest fixpoint operator.

Example 2.31 Let & be the following formula:

§=vapy. (pAOx) V(DA Oy)
~——— ~—\

Qp ap
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Then we claim that for any LTS S, and any state s in S:
S,s kg £ iff there is some path from s on which p is true infinitely often. (11)

To see this, first suppose that there is a path m = sgs1s2... as described in the right hand
side of (11) and suppose that 3 plays according to the following strategy:

(a) at a position (a; V agp,t), choose (o, t) if St I-4 p and choose (ap,t) otherwise;

(b) at a position (G, t), distinguish cases:
- if the match so far has followed the path, with ¢ = s, choose (¢, Sg+1);
- otherwise, choose an arbitrary successor (if possible).

We claim that this is a winning strategy for 3 in the evaluation game initialized at (&, s).
Indeed, since 3 always chooses the propositionally safe disjunct of oy, V ap, she forces V,
when faced with a position of the form (ap,t) = (£p A ¢z, t) to always choose the diamond
conjunct ¢z, or lose immediately. In this way she guarantees to always get to positions of the
form (<z, s;), and thus she can force the match to last infinitely long, following the infinite
path 7. But why does she actually win this match? The point is that, whenever she chooses
oy, three positions later, x will be unfolded, and likewise with a and y. Thus, p being true
infinitely often on 7 means that the v-variable x gets unfolded infinitely often. And so, even
though the p-variable y might get unfolded infinitely often as well, she wins the match since
x ranks higher than y anyway.

For the other direction, assume that S,s Ik, £ so that 3 has a winning strategy in the
game £(&,S) initialized at (&, s). It should be clear that any winning strategy must follow (a)
above. So whenever V faces a position (p A <z, t), p will be true, and likewise with positions
(p A Oz,t). Now consider a match in which V plays propositionally sound, that is, always
chooses the diamond conjunct of these positions. This match must be infinite since both
players will stay alive forever: V because he can always choose a diamond conjunct, and 3
because we assumed her strategy to be winning. But a second consequence of 3 playing a
winning strategy, is that it cannot happen that y is unfolded infinitely often, while x is not.
So z is unfolded infinitely often, and as before, x only gets unfolded right after the match
passed a world where p is true. Thus the path chosen by 3 must contain infinitely many states
where p holds. <

2.4 Bisimulation invariance and the bounded tree model property

Given the game-theoretic characterization of the semantics, it is rather straightforward to
prove that formulas of the modal p-calculus are bisimulation invariant. From this it is im-
mediate that the modal p—calculus has the tree model property. But in fact, we can use the
game semantics to do better than this, proving that every satisfiable modal fixpoint formula
is satisfied in a tree of which the branching degree is bounded by the size of the formula.

Theorem 2.32 (Bisimulation Invariance) Let¢ be a modal fixpoint formula with FV (§) C
P, and let S and S’ be two labelled transition systems with points s and s', respectively. If
S,s<pS,s, then

S,slkg & iff S, 8" 14 €.
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Proof. Assume that s ©p s and that S,s I, & with FV(§) C P. We will show that
S, s IFg €. By definition we may assume that 3 has a winning strategy f in the evaluation
game & := £(&,S) initialized at (£, s); that is, given an f-guided partial £-match 7 ending in
a position for 3, we let f(7) denote the next position as determined by f.

We need to provide her with a winning strategy in the game &£ := £(£,5)Q(E, s’). She
obtains her strategy f’ in £ from playing a shadow match of £, using the bisimilarity relation
to guide her choices.

To see how this works, let’s simply start with comparing the initial position (&, s’) of &
with its counterpart (&, s) of £. (From now on we will write s < s instead of s ©p §).

e In case ¢ is a literal, it is easy to see that both (&, s) and (&, s") are final positions. Also,
since f is assumed to be winning, £ must be true at s, and so it must hold at s’ as well.
Hence, 3 wins the match.

If £ is not a literal, we distinguish cases.

e First suppose that & = & V. If f tells 3 to choose disjunct &; at (&, s), then she chooses
the same disjunct &; at position (&,s"). If £ = & A &a, it is V who moves. Suppose in &’
he chooses &;, making (&;, s’) the next position. We now consider in £ the same move
of V, so that the next position in the shadow match is (&;, s).

e A third possibility is that £ = O, In order to make her move at (£, s'), 3 first looks
at (£, s). Since f is a winning strategy, it indeed picks a successor t of s. Then because
s © s, there is a successor t’ of s’ such that ¢t < t/. This t’ is 3’s move in £, so that
(1,t) and (1,t") are the next positions in £ and &’, respectively.

e If £ = O, we are dealing again with positions for V. Suppose in £ he chooses the
successor t' of s, so that the next position is (¢,t’). (In case s’ has no successors, V
immediately loses, so that there is nothing left to prove.) Now again we turn to the
shadow match; by bisimilarity of s and s’ there is a successor t of s such that t < t'.
So we may assume that V moves the game token of £ to position (¢, 1).

e Finally, if £ = nxd, then the next positions in £ and &’ are, respectively, (d,,s) and
(0, 8).

The crucial observation is that if 3 does not win immediately, then at least she can
guarantee that the next positions in £ and &£’ are of the form (¢, u) and (¢, u’) respectively,
with v € 4/, and such that the move in £ is consistent with f. We may in fact show that
she can maintain this condition throughout the match, and it is not hard to see that she can
construct a winning strategy based on this.

Making this proof sketch a bit more precise, we introduce some terminology (anticipating
the formal treatment of games in Chapter 5). Generally we identify matches of a game with
certain sequences of positions in that game, and we say that a match m = popy . . . pn is guided
by a strategy f for player II € {3,V} if for every i < n such that position p; belongs to II,
the next position p;4+1 is indeed the position dictated by the strategy f. In the context of
this particular proof we say that an &'-match 7' = (¢[, s0) (¢}, s1) - .- (¢l s),) is linked to an
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E-match ™ = (¢o,50)(¥1,51) - .- (©n, sn) (of the same length), if ¢} = ¢; and S/, s, < S;s;
for all 7 with 0 < ¢ < n. The key claim in the proof states that, for a £'-match #’, if 3 has
established such a bisimilarity link with an £-match that is f-guided, then she will either win
the £’-game immediately, or else she can maintain the link during one further round of the
game.

CrLAaM 1 Let 7’ be a finite £-match, and assume that 7’ is linked to some f-guided £-match
7. Then one of the following two cases apply.

1) both last(r") and last(w) are positions for 3, and 3 can continue 7’ with a legitimate
move (¢, t') such that 7" - (p,t') is bisimilarity-linked to 7 - (p,t), where (p,t) is the move
dicated by f in 7.

2) both last(n") and last(m) are positions for V, and for every move (¢',t) for V in 7’ there
is a legitimate move (¢, t) for V in 7 such that 7’ - (p,t’) is bisimilarity-linked to 7 - (¢, t).

The proof of this Claim proceeds via an obvious adaptation of the case-by-case argument
just given for the initial positions of £’ and £. Omitting the details, we move on to show that
based on Claim 1, 3 has a winning strategy in &’.

By a straightforward inductive argument we may provide 3 with a strategy f’ in &',
and show how to maintain, simultaneously, for every f’-guided match 7, an f-guided &-
match which is linked to n/. For the base case of this induction, simply observe that by
the assumption that S, s € §', ¢/, the initial positions of £ and £ constitute linked (trivial)
matches. For the inductive case we consider an f’-guided £’-match 7/, and inductively assume
that there is a bisimilarity-linked f-guided £-match 7. Now distinguish cases:

e If last(n’) is a position for 3, we use item 1) of Claim 1 to define her move (p,t'); it
follows that 7' - (p,t) and 7 - (p,t) are bisimilarity-linked (where (¢,t) is the move
dicated by f in 7).

e On the other hand, in case last(7’) is a position for V, assume that he makes some move,
say, (1,t'); now we use item 2) of the claim to define a continuation 7 - (¢,t) of 7 that
is bisimilarity-linked to 7" - (4, t').

To see why the strategy f' of 3 is winning for her, consider a full (i.e., finished) f’-guided
match 7/, and distinguish cases. If 7’ is finite, this means that one of the players must be
stuck, and we have to show that this player must be V. But we just showed that there must
be an f-guided match 7 which is bisimilarity-linked to /. It follows from the definiton of
linked matches that the final positions of 7’ and 7 must be, respectively, of the form (p,t’)
and (¢, t) for some formula ¢ and states t',¢ such that §',¢ < S,t. From this it is not hard
to derive that the same player who got stuck in 7’ also got stuck in ; and since 7 is guided
by 3’s supposedly winning strategy f, this player must be V indeed.

If 7" is infinite, say " = (¢4, 8})i<w, the shadow £-match maintained by 3 is infinite as
well. More precisely, the inductive argument given above reveals the existence of an infinite,
f-guided E-match 7 = (¢;, si)icw such that §', s} € S, s; for all i < w. The key observation,
however, is that the two sequences of formulas, in the £-match 7’ and its £-shadow m,
respectively, are exactly the same. This means that also in the infinite case the winner of 7/
is the winner of 7, and since 7 is f-guided, this winner must be 4. QED
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As an immediate corollary, we obtain the tree model property for the modal p-calculus.

Theorem 2.33 (Tree Model Property) Let £ be a modal fixpoint formula. If £ is satisfi-
able, then it is satisfiable at the root of a tree model.

Proof. For simplicity, we confine ourselves to the basic modal language. Suppose that ¢ is
satisfiable at state s of the Kripke model S. Then by bisimulation invariance, & is satisfiable
at the root of the unravelling §8 of S around s, cf. Definition 1.23. This unravelling clearly is
a tree model. QED

For the next theorem, recall that the size of a formula is simply defined as the number of
its subformulas.

Theorem 2.34 (Bounded Tree Model Property) Let £ be a modal fizpoint formula. If
& s satisfiable, then it is satisfiable at the root of a tree, of which the branching degree is
bounded by the size || of the formula.

Proof. Suppose that ¢ is satisfiable. By the Bisimulation Invariance Theorem it follows that
¢ is satisfiable at the root r of some tree model T = (T, R, V). So 3 has a winning strategy
f in the game £Q(&, r), where we abbreviate £ := £(£, T). By the Positional Determinacy of
the evaluation game, we may assume that this strategy is positional — this will simplify our
argument a bit. We may thus represent this strategy as a map f that, among other things,
maps positions of the form (G, s) to positions of the form (¢, ¢) with Rst.

We will prune the tree T, keeping only the nodes that 3 needs in order to win the match.
Formally, define subsets (7, )ncw as follows:

To = {r},
Thv1 = ToU{s]| (¢,8) = f(Cp,t) for some t € T,, and G <&}
T, = Unew In-

Let T, be the subtree of T based on T,,. (Note that T, is in general not a generated submodel
of T: not all successors of nodes in T,, need to belong to T,.) From the construction it is
obvious that the branching degree of T, is bounded by the size of £, because £ has at most
|¢| diamond subformulas.

We claim that Ty, 7 Ik, & To see why this is so, let £ := £(€, Ty,) be the evaluation game
played on the pruned tree. It suffices to show that the strategy f’, defined as the restriction
of f to positions of the game £’, is winning for 3 in the game starting at (£,r). Consider an
arbitrary £-match m = (£,7)(p1,t1) ... which is consistent with f’. The key observation of
the proof is that 7 is also a match of £Q(¢,r), that is consistent with f. To see this, simply
observe that all moves of V in 7 could have been made in the game on T as well, whereas by
construction, all f moves of 3 in £ are f moves in £.

Now by assumption, f is a winning strategy for 3 in £, so she wins 7 in £. But then 7 is
winning as such, i.e., no matter whether we see it as a match in £ or in £’. In other words,
7 is also winning as an £-match. And since m was an arbitrary £’-match starting at (&, r),
this shows that f’ is a winning strategy, as required. QED
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2.5 Traces, the closure map and the closure game

In this section we define an alternative version of the evaluation game for p-calculus formulas,
in which the equivalence

nwx = x[nw X/l
is exploited more directly than in the subformula game that we defined in section 2.2. The
idea in the closure game is that, at a position (nx x, s) the fixpoint formula will simply be
unfolded, yielding the pair (x[nx x/z], s) as the (unique) next position. That is, the admissible
moves in the closure game are given in Table 5.

Position Player | Admissible moves

{(#, )( s)}
{(9.9). ()}
{(
{(

1) | SRt}
p,t) | sRt}
and s € V(p)
p,s) withp e FV (&) and s ¢ V(p)
p,s) withpe FV(¢) and s € V(p)
p,s) withpe FV (&) and s ¢ V(p)

N9, s) - {(plnr p/a],s)}

< W W <C <€ W <C W

1%}
1)
1%}
1%}

(€)
(€)
(€)
©)

(
(
(
(
(p,s) withpe FV
(
(
(
(

Table 5: Positions and admissible moves in the closure evaluation game £¢(¢,S)

In order to turn this table into a proper game, we need to introduce appropriate winning
conditions for the two players. For this purpose we introduce some terminology and notation,
and we make some observations. We start with the notion of a trace.

Traces and the closure game

Definition 2.35 Let —¢ be the binary relation between tidy p-calculus formulas given by
the following exhaustive list:

1) (wo ® 1) —¢ @i, for any ¢g, 1 € ML, ® € {A,V} and i € {0,1};

2) QO —¢ ¢, for any ¢ € pML and © € {O,0});

3) nz.p —¢ pnr.@/x], for any nr.e € pML, with n € {u, v}.
We call a —¢-path ¥g —¢ 1 —¢ -+ = ¥, a (finite) trace; similarly, an infinite trace is a
sequence (¥;)i<w such that ¥; —¢ ;41 for all i < w. <

Intuitively a trace is a sequence that corresponds to the formula part of a possible match
of the closure game. The closure of a formula consists of the formulas that can be encountered
in such a match.

Definition 2.36 We define the relation —¢ as the reflexive and transitive closure of —¢,
and define the closure of a tidy formula 1) as the set

Cl(¥) :=={p | Y —c o}
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Given a set of formulas ¥, we put Cl(¥) := U,y Cl(¢), and we call ¥ closed if ¥ = CI(¥).
Formulas in the set Cl(1)) are said to be derived from 1. The closure graph of 1 is the directed
graph C¢ := (CI(£), —c). <

In words, CI(£) is the smallest set which contains £ and is closed under direct boolean and
modal subformulas, and under unfoldings of fixpoint formulas. In terms of traces: a formula
x belongs to the closure of a formula ¢ iff there is a trace from £ to x. Furthermore, a trace
starting at £ is nothing but a path in the closure graph starting at &.

Remark 2.37 The final example of Remark 2.18 shows that the closure of a non-tidy formula
may not even be defined — unless we work with alphabetical variants. We will come back to

this point later. 5

The following example will be instructive for understanding the concept of closure, and
its relation with subformulas.

Example 2.38 Consider the following formulas:

& = pxwagpws.(((z1 vV ag) Vag) AD((z1 Vo) V a3))
&H = VIToUIL3. (((fl V xQ \/ 373) A D((& V xg) V 333))
{3 = pas. (&1 V&)V as) ANO((E1V &) V x3))
§a = (1 VE&)VE)AD((G1V &)V E))
a = (1V&)VEs

B o= §1V &,

and let ® be the set ® := {{1, &2, &3, &4, Do, o, B}
For i = 1,2, 3, the formula &1 is the unfolding of the formula &;. Thus we find CI(&;) = ®
in fact, we have Cl(p) = @ for every formula ¢ € ®. In Figure 2 we depict the closure graph

of 51.
9

start H @ @ @

‘
O
Figure 2: A closure graph

Observe that the formulas &1, &2, &3 and &4 are equivalent to one another, and hence also
to a. Note too that the formula & is the only clean formula in ®, and that it is a subformula
of every formula in CI(&;). <
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The closure of £ consists of the formulas that one may encounter in a match of the closure
game £°(&,S), and, as a consequence of this, we will take CI(£) x S as the set of positions in
this game. As we will see now, the key observation for defining the winning conditions of this
game is that every infinite trace can be identified as either a u-trace or a v-trace. This is in
some sense the analogon of Proposition 2.24.

Proposition 2.39 1) Let T be a finite trace. Then there is a unique formula on T which is
a subformula of every formula on T.

2) Let T be a infinite trace. Then there is a unique formula which appears infinitely often
on T, and is a subformula of cofinitely many formulas on 7. This formula is always a fixrpoint
formula.

Proof.
» Proof to be supplied.

QED

Definition 2.40 Let 7 be an infinite trace. The formula nz ¢ which appear infinitely often
on 7 and is a subformula of all formulas on 7 is called the most significant formula of T,
notation: msf(7). Depending on the nature of  we call 7 either a p-trace or a v-trace. <

This concept enables us to complete the definition of the closure game.

Definition 2.41 Let S = (S, R, V) be a Kripke model and let { be a tidy formula in puML.
We define the evaluation game £°(€,S) as the game (G, E,Q2) of which the board consists of
the set CI(§) x S, and the game graph (i.e., the partitioning of CI(§) x S into positions for
the two players, together with the set E(z) of admissible moves at each position), is given in
Table 5.

The winner of an infinite match m = (&, Sn)n<w is 3 if its left projection 7p := (&) n<w is
a v-trace, and V if it is a v-trace. <

The closure operation

The closure operation is one of the most fundamental tools in the theory of the modal u-
calculus, and in this subsection we discuss some of its properties, the most important being
Proposition 2.45 stating that the closure of a finite set is always finite.

We first gather some basic observations. To start with, while Example 2.38 clearly shows
that the unfolding of a clean formula will generally not be clean, tidyness is preserved.

Proposition 2.42 Let £ € uML be a tidy formula, and let ¢ be derived from . Then
1) BV(p) € BV () and FV(p) C FV(§);
2) ¢ is tidy;
3) if ¥ is free for x in € then it is also free for x in .



Lectures on the modal p-calculus 2-21

Proof. The proofs of the first two items proceed by a straightforward induction on the trace
& - ¢ . For instance, for the preservation of tidyness it suffices to prove that y is tidy if Oy
is so (where © € {<,0}), that xo and x1 are tidy if xo ® x1 is so (where ® € {A,V}), and
that the unfolding of a tidy formula is tidy again. The proofs of the first two claims are easy,
and the third claim was stated in Proposition 2.19.

» For part (3)) ...

QED

Second, the following proposition states that Cl is indeed a closure operation. We leave
the proof of this proposition as an exercise for the reader.

Proposition 2.43 Cl is a closure operation on the collection of tidy formulas:
1) ® C Cl(D);
2) Cl is monotone: ® C U implies Cl(®) C CI(¥);
3) CI(Cl(®)) C Cl(D).

The proposition below will prove to be very useful. It details how the closure map interacts
with various connectives and formula constructors of the p-calculus.

Proposition 2.44 Let £ be a tidy formula. Then the following hold.

1) Let ¢ <& be a literal occurring in &, and assume that £ ¢ BV (£). Then ¢ € CI(&).

2) If £ = Qx, then x is tidy and Cl(§) = {Ox} U Cl(x), where O € {<&,01.

3) If £ = xo ® x1 then both x; are tidy and Cl(§) = {xo ® x1} U Cl(x0) U Cl(x1), where
® € {A,V}.

4) If € = x[v/x], x is tidy, v € FV(x) and v is free for x in x, then v is tidy and

CU(§) = {wl/x] | p € Cl(x)} U ClL(y).

5) Let & = nz.x, where n € {u,v}; assume that v € FV(x), and let x* be some fresh
variable. Then x[z*/x] is tidy and

CU(§) = {elnz.x/x"] | ¢ € Cl(x[z"/x])}. (12)

Before we turn to the proof of Proposition 2.44, we briefly comment on the formulation
of part 5). Note that if £ is of the form £ = nx x, then x is not necessarily tidy, so that Cl(x)
may not be defined. For this reason we use a fresh propositional variable x*. However, in
case x is tidy, (12) simplifies to

Cl(§) = {pnz.x/x] | p € Cl(x)}- (13)

Proof. We prove the first and fourth claim of the proposition, leaving the other parts to the
reader. The second and third claim are easy to prove, and part 5) is a fairly direct consequence
of part 4).
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For the first item, define the height of £ in £ as the length of the shortest chain of the
form g <g 1 <o - - - <o n such that g9 = ¢, p, = &, and, in case ¢ is a propositional variable
p, no formula ¢; is of the form np. It is then straightforward to prove that ¢ € CI(&) by
induction on the height of £ in £&. We leave the details for the reader.

For the proof of 4), assume that = € FV(x) and that ¢ is free for x in x. By Proposi-
tion 2.42(3), the formula ¢ is free for x in every ¢ € Cl(x). To prove the inclusion C it suffices
to show that the set {¢[p/z] | ¢ € Cl(x)} U Cl(¢)} has the required closure properties. This
is easily verified, and so we omit the details.

For the opposite inclusion, we first show that

pl/z] € Cl(x[yp/x]), for all p € Cl(x), (14)

and we prove this by induction on the trace from £ to ¢. It is immediate by the definitions
that x[v/x] € Cl(x[¢/x]), which takes care of the base case of this induction.

In the inductive step we distinguish three cases. First, assume that ¢ € CI(x) because the
formula Q¢ € Ci(x), with © € {<, 0}, Then by the inductive hypothesis we find Qp[¢)/x] =
(Qp)[/z] € Cl(x[tp/z]); but then we may immediately conclude that ¢[¢/x] € Cl(x[/x])
as well. The second case, where we assume that ¢ € Cl(x) because there is some formula
e® ¢ or ¢ ®pin Cl(x) (with ® € {A,V}), is dealt with in a similar way.

In the third case, we assume that ¢ € Cl(x) is of the form ¢ = p[Ay.p/y], with A € {u,v}
and A\y.p € Cl(x). Then inductively we may assume that (Ay.p)[o/x] € Cl(x[¢/x]). Now we
make a case distinction: if x = y we find that (Ay.p)[1p/z] = Ay.p, while at the same time we
have p[/x] = p[Ay.p/yllv/x] = p[Ay.p/y], so that it follows by the closure properties that
el/x] € Cl(x[tp/z]) indeed. If, on the other hand, z and y are distinct variables, then we
find (Ay.p)[vv/x] = Ay.p[tp/x], and so it follows by the closure properties that the formula
(p[w/x]) [My.p[t/x]/y] belongs to Cl(x[t/x]). But since t is free for x in x, the variable y
is not free in v, and so a straightforward calculation shows that (p[v/2])[Ay.p[v/z]/y] =
plAy.p/yll/x] = ¢[/x], and so we find that ¢[¢/x] € Cl(x[/x]) in this case as well. This
proves (14).

To see why this implies part 4) of the proposition, it remains to show that CI(¢)) C CI(§).
But from x € FV(x) we infer x € Cl(x) by part 1), and from this we obtain that ¢ =
z[yp/x] € CI(&). This suffices by Proposition 2.43. QED

As an almost immediate corollary of Proposition 2.54 we find that the closure set of a
p-calculus formula is always finite.

Proposition 2.45 Let £ € pML be some formula. Then the set CI(§) is finite.

Proof. We prove the proposition by induction on the length of a formula, as defined in
Definition 2.5. More precisely, we claim that

cue)l < lglf (15)

for every tidy formula & € pML.
In case £ is a formula of length 1 it must be atomic, so (15) is obvious. For the inductive
case we consider a formula & with |¢|¢ > 1; such a formula cannot be atomic, and so it must
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be a boolean, modal or fixpoint formula. We now make a case distinction, only considering
the cases where £ is a conjunction or a pu-formula.

First let £ be of the form § = & A &. By Proposition 2.44(3) we obtain |CI()]
|Cl(&0)| +|Cl(&1)], and the induction hypothesis yields | CI(&;)| < |&|°. Thus we find | CI(€)]
&l + 1&l" < €l

If € is of the form £ = pux x we further distinguish cases. If x is not free in x we have
x[&/z] = x and so Cl(§) = {£} U Cl(x). Thus, using the induction hypothesis on y, we obtain
ICLE)| < 1+ [Cl(x)| <1+ |x]¢ = [€]f, as required. On the other hand, if 2 does occur
freely in x, by Proposition 2.44(5) we find |CI(§)| < |Cl(x[z*/z])|. But since x[z*/z] has
the same length as y we may use the induction hypothesis for it; this gives |Cl(x[z*/z])| <
Ix[z*/z]|* = |x|°. Combining these observations we find that |CI(¢)| < |x|¢ = |¢|* — 1 which
obviously suffices to prove (15). QED

<
<

Remark 2.46 Note that we can give a much sharper upper bound to the size of a formula’s
closure set than (15) which bounds this size by the length of the formula. In fact, we will
see further on that the number of formulas that can be derived from a formula may be
exponentially smaller than its number of subformulas, and that the first number is a more
suitable size measure than the latter. <

2.6 Basic syntax: continued

» In this section we discuss some further basic syntactic concepts
o size

alternation depth

guardedness

free subformulas

expansion map

O O O ©o

The size of a formula

Turning to computational aspects of the modal p-calculus, we will see that two measures of
a formulas feature prominently when we are interested in the complexity of algorithms for,
e.g., model checking of a formula on a model, or satisfiability checking of a formula: its size
and its alternation depth. Both notions are in fact quite subtle in that they admit several

non-equivalent definitions.

When it comes to size, there are at least three definitions that look reasonable, at first
sight: in principle one could define the size of a formula as its length, its subformula-size, or
its closure-size.

» For reasons that will be discussed later on, we opt for the third option: closure
size.

Definition 2.47 The size |£] of a tidy formula ¢ is given by

[ == [CUE)],

i.e., it is defined as the number of formulas that are derived from &.
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The subformula-size of a clean formula £ is defined as follows:

€1 = ISF ()],
i.e., [¢|¢ is given as the number of subformulas of &. <

» Discuss the various options.

» Each definition corresponds to a certain way of representing a formula as a graph-based
structure: the length of a formula corresponds to the number of nodes in its syntax
tree, its subformula-size to the number of ondes in its subformula dag, and its closure-size
to the size of its closure graph.

» Note that while the notion of length applies to all formulas, this is different
for the other two measures.

» It is well-known that the subformula-size of a formula can be exponentially smaller
than its length, further on we will see that, perhaps counterintuitively, the closure-size
of a formula can be exponentially smaller than its subformula size.

Alternation

» For the time being alternation is covered in a separate section.

Guardedness

We finish our sequence of basic syntactic definitions with the notion of guardedness, which
will become important later on.

Definition 2.48 A variable x is guarded in a uMLp-formula ¢ if every occurrence of x in ¢
is in the scope of a modal operator. A formula £ € uMLp is guarded if for every subformula
of £ of the form nz.d, z is guarded in J. <

In the next chapter we will prove that every formula can be effectively rewritten into an
equivalent, clean and guarded formula.

Free subformulas

We now have a closer look at the relation between the sets Sf(§) and CI(§). Our first
observation concerns the question, which subformulas of a formula also belong to its closure.
This brings us to the notion of a free subformula.

Definition 2.49 Let ¢ and ¥ be p-calculus formulas. We say that ¢ is a free subformula of
¥, notation: ¢ <y ¢, if ¥ = ¢'[p/x] for some formula ¢’ such that z € FV(¢') and ¢ is free
for x in 1)’ <

Note that in particular all literals occurring in 1 are free subformulas of . The following
characterisation is useful. Recall that we write ¢ —¢ ¢ if ¢ € Cl(¢p), or equivalently, if there
is a trace (possibly of length zero) from ¢ to 1.
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Proposition 2.50 Let ¢ and ¢ be p-calculus formulas. If 1 is tidy, then the following are
equivalent:

1) o Ly ;
2) ¢ < and FV () N BV (¢) = &;

3) ¢ LY and ¢ —c .

Proof. We will prove the equivalence of the statements 1) - 3) to a fourth statement, viz.:
4) there is a <g-chain ¢ = x0 < X1 <0 - - <o Xn = ¥, such that no x; has the form y; = ny.p;
with y € FV (o).

For the implication 1) = 4), assume that ¢ <y 9, then by definition ¢ is of the form
Y'[p/z] where x € FV(¢)') and ¢ is free for x in ¢'. But if x € FV (1), then it is easy to
see that there is a <p-chain x = x{ <o X} <0 -+ <o X, = ¥ such that no x} is of the form
X; = (z.p/. Assume for contradiction that one of the formulas X} is of the form x; = ny.p;
where y € FV(p). Since ¢ is free for z in ¢’ this would mean that there is a formula of
the form (z.x with ny.p; < (z.x < ¢’. However, the only candidates for this would be the
formulas x’; with j >4, and we just saw that these are not of the shape (z.p". This provides
the desired contradiction.

For the opposite implication 4) = 1), assume that there is a <p-chain ¢ = x <0 x1<0 - - <o
Xn = ¥ as in the formulation of 4). One may then show by a straightforward induction that
¢ <y xi, for all i > 0.

For the implication 2) = 4), assume that ¢ < ¢ and FV(p)NBV (¢) = @. It follows from
@ <4 that there is a <g-chain ¢ = xg <9 x1 <0 - - <o Xn = . Now suppose for contradiction
that one of the formulas x; would be of the form x; = ny.p; with y € FV (). Then we would
find y € FV(p) N BV (v), contradicting the assumption that FV () N BV () = @.

In order to prove the implication 4) = 3), it suffices to show, for any n, that if (x;)o<i<n
is an <p-chain of length n + 1 such that no x; has the form x; = ny.p; with y € FV(xo),
then x, —¢ xo- We will prove this claim by induction on n. Clearly the case where n =0 is
trivial.

For the inductive step we consider a chain

X0 <0 X1 <0 <0 Xn <0 Xn+1

such that no y; has the form y; = ny.p; with y € FV(x), and we make a case distinction as
to the nature of xn+1. Clearly xn+1 cannot be an atomic formula.

If Xnt1 is of the form py ® p; with ® € {A,V}, then since x, <o Xn+1, the first formula
must be of the form x,, = p; with i € {0,1}. But since it follows by the induction hypothesis
that x»n —¢ X0, we obtain from x,11 —¢ Xn that xp+1 —c Xxo as required. The case where
Xn+1 18 of the form Qp with © € {<¢, 0} is handled similarly.

This leaves the case where y,t+1 = Ay.p is a fixpoint formula. Then since Xy, <9 Xn+1
it must be the case that x, = p. Furthermore, it follows from the assumption in 4) that
y & FV(xo0). From this it is not so hard to see that

X0 <0 X1[Xn+1/Y] <0 -+ <0 Xn[Xn+1/Y]
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is a <p-chain to which the induction hypothesis applies. It follows that x,[xn+1/Y] ¢ Xo-
From this and the observation that x,+1 —c Xn[Xn+1/y] we find that x,+1 —c xo indeed.
This finishes the proof of the implication 4) = 3).

Finally, it follows from Proposition 2.42(1) that ¢ —¢ ¢ implies FV () N BV () C
FV ()N FV () = @. From this the implication 3) = 2) is immediate. QED

As a nice application of the notion of a free subformula, the following proposition states
that under some mild conditions, the substitution operation [{/z] is in fact injective. We
leave the proof of this proposition as an exercise to the reader.

Proposition 2.51 Let ¢q, 01 and & be formulas such that & is free for x in both pg and @1,
and not a free subformula of either w;. Then

wolé/x] = p1[§/x] implies po = 1. (16)

The expansion map

The most important observation here concerns the existence of a surjective map from Sf (&)
to CI(§), at least for a clean formula £. Recall that, given a clean formula £, we define the
dependency order <¢ on the bound variables of £ as the least strict partial order such that
x <¢yif 6,26, and y < 0.

Definition 2.52 Writing BV (§) = {1, ...,2,}, where we may assume that i < j if z; <¢ z;,
we define the ezpansion exp¢(yp) of a subformula ¢ of ¢ as:

expe () 1= PNy 1.0z, /T1] - - - [Ny Tn-On, [T

That is, we substitute first z; by 1,,21.05, in ¢; in the resulting formula, we substitute 2
bY 72,202y, etc. If no confusion is likely we write exp(p) instead of expg(¢). A proposition
letter p is active in  if p occurs in §, for some y >¢ x, or equivalently, if p occurs in expg(¢p).
<

Without proof we mention the following result.

Proposition 2.53 Let € € uML be a clean formula and S a pointed Kripke structure. Then
for all subformulas p <& and all states s in S we have

(¢,5) € Wing(E(€,8)) iff S, s -y expe ().

The proposition below states that, for a clean formula x4, the expansiom map is a surjec-
tion from its set of subformulas of ¢ to its closure. As an immediate corollary we obtain that
the size of CI(§) is bounded by that of Sf(&).

Proposition 2.54 Let £ be a clean uML-formula. Then
ClU(&) = {expe(p) | v <&} (17)

Proof. For the time being we confine ourselves to a brief sketch. For the inclusion C it
suffices to show that the set {exp¢(p) | ¢ < &} has the relevant closure properties. This is a
fairly routine proof. For the opposite inclusion it suffices to prove that exp,(y) € CI(§), for
every ¢ € Sf(§), which can be done by a straightforward induction. QED
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2.7 Alternation depth

After size, the most important complexity measure of modal u-calculus formulas concerns the
degree of nesting of least- and greatest fixpoint operators in the syntax tree (or dag) of the
formula. Intuitively, the alternation depth of a formula £ will be defined as the length of a
maximal chain of nested, alternating fixpoint operators. As in the case of size, there is more
than one reasonable way to make this intuition precise

As a first example, consider the formula

& = px.(vy.p AQy) V Ox,

expressing the reachability of some state from which only p-states will be reachable. Clearly
this formula features a v-operator in the scope of a u-operator, and in the most straightforward
approach one might indeed take this as nesting, and define the (simple) alternation depth of
the formula & as 2. However, a closer inspection of the formula &; reveals that, since the
variable  does not occur in the subformula vy.p A Oy, the latter subformula does not really
depend on x. This is different in the following example:

§o = va.py.(p A Ox) V Qy,

stating the existence of a path on which p is true infinitely often. Here the variable x does
occur in the subformula py.(p A Ox) V Oy; that is, €2 contains a ‘real’ v/u-chain of fixpoint
operators. In the definition of alternation depth ad that we shall adopt, we will see that
ad(&2) =2 but ad(&) = 1.

The formal definition of alternation depth involves inductively defined formula collections
Oy, where n € {u,v} and n is a natural number. Intuitively, the class O, consists of those
u-calculus formulas where n bounds the length of any alternating nesting of fixpoint operators
of which the most significant formula is an n-formula. We will make this intuition more precise
further on.

For the next definition, recall our notation g = v, v = pu.

Definition 2.55 By natural induction we define classes ©},, O of y-calculus formulas. With
n, A € {u, v} arbitrary, we set:

1. all atomic formulas belong to O;

2. if @, 1 € O, then o V 1, 0o A 01, g, Opg € OF;

3. if p € O} then z. € O;

4. if p(z),v € O, then ¢[¢p/x] € O}, provided that 1 is free for z in ¢;
9

. all formulas in ©;, belong to O] ;.

The alternation depth ad(§) of a formula ¢ is defined as the least n such that £ € O, N OF.
A formula is alternation free if it has alternation depth at most 1. <

Roughly, we obtain ©f by closing the set of basic modal formulas under the boolean and
modal operators, and the greatest fixpoint operator; and similarly for ©f. Inductively, we
obtain ! 41 by closing the set ©;) under the boolean and modal operations, substitution, and
the m-operator.
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Remark 2.56 » Make connection with X/II- notation (CHECK):
o 2071_[0 = @g n @5
0 Ypt1:=07, Il =08,
<

Example 2.57 Observe that the basic modal (i.e., fixpoint-free) formulas are exactly the
ones with alternation depth zero. Formulas that use p-operators or v-operators, but not
both, have alternation depth 1. For example, observe that ux.p V x belongs to ©f but not to
©f: none of the clauses in Definition 2.55 is applicable. On the other hand, using clause (5)
it is easy to see that uz.pV z € OV N OY, from which it is immediate that ad(pz.pV z) = 1.

Consider the formula & = pz.(vy.p A Oy) A Oz, Taking a fresh variable ¢, we find
px.g A<z € ©F C OF and vy.p A Oy € Of C OV, so that by the substitution rule we have
& = (px.g A Ox)[vy.p A Oy/q] € ©F. Similarly we may show that & € O, so that & has
alternation depth 1.

The formula & = vz.uy.(p A Ox) V Oy is of higher complexity. It is clear that the formula
py.(p A Oz) vV Oy belongs to ©F but not to ©f. From this it follows that & belongs to O
but there is no way to place it in ©. Hence we find that ad(&2) = 2.

As a third example, consider the formula

& = prwvy.(Oy A pz.(Cx V 2)).

This formula looks like a u/v/p-formula, in the sense that it contains a nested fixpoint chain
pux/vy/pz. However, the variable y does not occur in the subformula pz.($x V z), and so the
variable z is not dependent on y. Consequently we may in fact consider &3 as a p/v-formula.
Formally, we observe that pz.0z VvV z € ©f C ©F and vz.0y Ap € O C OYf; from this it
follows by the substitution rule that the formula vy.(Oy A pz.(Gx V 2)) belongs to the set ©F
as well; from this it easily follows that {3 € ©Y. It is not hard to show that & ¢ O, so that
we find ad(&3) = 2. <

In the propositions below we make some observations on the sets ©;, and on the notion of
alternation depth. First we show that each class ©} is closed under subformulas and derived
formulas.

Proposition 2.58 Let Let £ and ¢ be p-calculus formulas.
1) If p <€ and € € O} then p € O}.
2) If € ¢ ¢ and & € O)), then ¢ € O.

Proof. We prove the statement in part 1) by induction on the derivation of £ € ©;,. In the
base case of this induction we have that n = 0 and £ is an atomic formula. But then obviously
all subformulas of £ are atomic as well and thus belong to ©;).

In the induction step of the proof it holds that n > 0; we make a case distinction as to
the applicable clause of Definition 2.55.

In case £ € ©; because of clause (2) in Definition 2.55, we make a further case distinction
as to the syntactic shape of £. First assume that £ is a conjunction, say, & = & A &1, with
0,&1 € ©;). Now consider an arbitrary subformula ¢ of &; it is not hard to see that either
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o =Eor ¢ for some i € {0,1}. In the first case we are done, by assumption that £ € ©3};
in the second case, we find ¢ € ©;) as an immediate consequence of the induction hypothesis.
The cases where £ is a disjunction, or a formula of the form Ot or ¢t are treated in a similar
way.

If £ € O] because of clause (3) of the definition, then ¢ must be of the form & = nx.y,
with x € ©5. We proceed in a way similar to the previous case: any subformula ¢ < ¢ is
either equal to £ (in which case we are done by assumption), or a subformula of y, in which
we are done by one application of the induction hypothesis.

In the case of clause (4), assume that £ is of the form x[¢/z], where ¢ is free for z in
X, and x and v are in ©;). Then by the induction hypothesis all subformulas of x and 1
belong to ©;) as well. Now consider an arbitrary subformula ¢ of &; it is easy to see that
either o < x, ¢ < ¢ or else p is of the form ¢ = ¢'[1/x] where ¢’ < x. In either case it is
straightforward to prove that ¢ € ©)), as required.

Finally, in case ¢ is in ©;, because of clause (5), it belongs to ©)_; for some A € {y,v}.
Then by induction hypothesis all subformulas of ¢ belong to @ﬁfl. We may then apply the
same clause (5) to see that any such ¢ also belongs to the set ©).

To prove part 2), it suffices to show that the class ©; is closed under unfoldings, since by
part 1) we already know it to be closed under subformulas. So assume that Az.x € ©; for
some n and A € {u,v}. Because x < na.x it follows from part 1) that x € ©;). But then we
may apply clause (4) from Definition 2.55 and conclude that x[n.x/z] € ©)). QED

As an immediate corollary of Proposition 2.58 we find the following.

Proposition 2.59 Let & and x be p-calculus formulas. Then

1) if x € Sf(€) then ad(x) < ad(§);
2) if x € CI(€) then ad(x) < ad(£).

In the case of a clean formula there is a simple characterisation of alternation depth,
making precise the intuition about alternating chains, in terms of the formula’s dependency
order on the bound variables.

Definition 2.60 Let £ € uML be a clean formula. A dependency chain in £ of length d is a
sequence T = x1 - - - xq such that x1 <¢ @2 --- <¢ x4; such a chain is alternating if x; and ;11
have different parity, for every i < d. For n € {u, v}, we call an alternating dependency chain
x1---xq an n-chain if r4 is an n-variable, and we let d,)(§) denote the length of the longest
n-chain in &; we write d,,(§) = 0 if £ has no such chains. <

Proposition 2.61 Let & be a clean formula. Then for any k € w and n € {u, v} we have

§ € O iff dy(§) <k, (18)

As a corollary, the alternation depth of £ is equal to the length of its longest alternating
dependency chain.
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One of the key insights in the proof of this Proposition is that, with ¢ free for z in ¢, any
dependency chain in @[t /x] originates entirely from either ¢ or 1. Recall from Definition 8.1
that we write t = v and v = p.

Proof. We prove the implication from left to right in (18) by induction on the derivation
that ¢ € ©]. In the base step of this induction (corresponding to clause (1) in the definition
of alternation depth) & is atomic, so that we immediately find d,(§) = 0 as required.

In the induction step of the proof, we make a case distinction as to the last applied clause
in the derivation of £ € O], and we leave the (easy) cases, where this clause was either (2) or
(3), for the reader.

Suppose then that & € ©} on the basis of clause (4). In this case we find that & = ¢'[¢/z]
for some formulas &',1 such that ¢ is free for z in & and &,¢ € ©]. By the ‘key insight’
mentioned right after the formulation of the Proposition, any 7-chain in the formula € is a
n-chain in either & or 1. But then by the induction hypothesis it follows that the length of
any such chain must be bounded by k.

Finally, consider the case where £ € ©] on the basis of clause (5). We make a further case
distinction. If £ € ©]_,, then by the induction hypothesis we may conclude that d,(§) < k—1,

and from this it is immediate that d,(§) < k. If, on the other hand, & € 92—1 then the
induction hypothesis yields dz(§) < k — 1. But since d,)(§) < dy(€) + 1 we obtain d,(§) < k
indeed.

The opposite, right-to-left, implication in (18) is proved by induction on k. In the base
step of this induction we have d,(£) = 0, which means that £ has no n-variables; from this it
is easy to derive that £ € 9.

For the induction step, we assume as our induction hypothesis that (18) holds for k € w,
and we set out to prove the same statement for k + 1 and an arbitrary n € {u,v}:

if dp(§) <k +1then &€ O], (19)

We will prove (19) by an ‘inner’ induction on the length of £&. The base step of this inner
induction is easy to deal with: if |{| = 1 then £ must be atomic so that certainly £ € ®Z+l‘

In the induction step we are considering a formula ¢ with [£| > 1. Assume that d,(§) <
k+1. We make a case distinction as to the shape of £&. The only case of interest is where £ is a
fixpoint formula, say, £ = nx.x or § = fz.x. If £ = fjx.x, then obviously we have d,(£) = J,(x),
so by the inner induction hypothesis we find x € @Z 41~ From this we immediately derive that
E=Tx.x € @Zﬂ as well.

Alternatively, if & = nz.y, we split further into cases: If x has an 7-chain y; - - - yx11 of
length k 4 1, then obviously we have x & FV (dy41) (where we write 641 instead of dy, ., ),
for otherwise we would get x >¢ yp41, so that we could add z to the 7-chain y; - - - yp41 and
obtain an n-chain y; - - - yp11x of length k + 2. But if x € FV (d+1) we may take some fresh
variable z and write £ = '[fyg11.0k+1/2] for some formula £ where the formula yg1.0k41
is free for z. By our inner induction hypothesis we find that both ¢ and nyg11.0x1+1 belong to
©] ;. But then by clause (4) of Definition 2.55 the formula ¢ also belongs to the set ©] ;.

If, on the other hand, x has no 7-chain of length k£ + 1, then we clearly have dz(x) < k.
Using the outer induction hypothesis we infer y € @Z, and so by clause (3) of Definition 2.55

we also find £ = nz.x € 92. Finally then, clause (5) gives £ € @ZH' QED
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One may prove a similar (but somewhat more involved) characterisation in the wider
setting of tidy formulas, as we will see further on.

Notes

The modal p-calculus was introduced by D. Kozen [15]. Its game-theoretical semantics goes
back to at least Emerson & Jutla [11] (who use alternating automata as an intermediate step).
As far as we are aware, the bisimulation invariance theorem, with the associated tree model
property, is a folklore result. The bounded tree model property is due to Kozen & Parikh [17].

There are various ways to make the notion of alternation depth precise; we work with the
most widely used definition, which originates with Niwiriski [22].

» More notes to be supplied.

Exercises

Exercise 2.1 Express in words the meaning of the following u-calculus formula:
ve.py.(p AOx) V (DA Dy).

Exercise 2.2 (defining modal p-formulas) Give a modal p-formula ¢(p, ¢) such that for
all transition systems S, and all states sg in S:

S,s0 IFg @(p,q) iff  there is a path soRsi ... Rs, (n > 0) such that S, s, Ik, p
and S, s; I, ¢ for all 4 with 0 <@ < n.

Exercise 2.3 (characterizing winning strategies)
A board is a structure B = (By, By, E) such that BynB; = @ and E C B2, where B = Bow B
is a set of objects called positions. A match on B consists of the players 0 and 1 moving a
token from one position to another, following the edge relation E. Player i is supposed to
move the token when it is situated on a position in B;. Suppose in addition that B is also
partitioned into green and red positions, B =G W R.

We will use a modal language to describe this structure, with the modalities being in-
terpreted by the edge relation F, the proposition letter py and r referring to the positions
belonging to player 0, and the red positions, respectively. That is, V(py) = By and V(r) = R.

(a) Consider the game where player 0 wins as soon as the token reaches a green position.
(That is, all infinite matches are won by player 1. Player 0 wins if player 1 gets stuck, or
if the token reaches a green position; player 1 wins a finite match if player 0 gets stuck.)
Show that the formula ¢, = pz.7V (po A Oz) V (py A Ox) characterizes the winning
positions for player 0 in this game, in the sense that for any position b € B, we have

B,V,blr4 ¢ iff player 0 has a w.s. in the game starting at position b.
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(b) Now consider the game where player 0 wins if she manages to reach a green position
infinitely often. (More precisely, infinite matches are won by 0 iff a green position is
reached infinitely often; finite matches are lost by a player is he/she gets stuck.) Give
a formula ¢y that characterizes the winning positions in this game.

Exercise 2.4 (characterizing fairness) Let D = {a, b} be the set of atomic actions, and
consider the following formula £, with subformulas as indicated:

1)
E=va.pyvz. O,z A (O, LV Opy) A Opz
aq a9 a3

Fix an LTS S = (S, Ry, Ry, V). We say that the transition a is enabled at state s of S if
S,5lFg O T.

Show that £ expresses some kind of fairness condition, i.e., the absence of a path starting
at s on which a is enabled infinitely often, but executed only finitely often. More precisely,

prove that S,s I, £ iff there is no path of the form sg 4 $1 i\ So--- such that s = s,
d; € {a,b} for all i, a is enabled at s; for infinitely many ¢, but d; = a for only finitely many
i.

Exercise 2.5 (filtration) Recall that, given a finite, closed set of formulas ¥ and a model
S = (S,R,V), we say that a model §' = (S, R/, V') is a filtration of S through ¥ if there is a
surjective map f : S — S’ such that:

a) for all proposition letters p € X: u € V(p) iff f(u) € V'(p).

b) wRv implies f(u)R'f(v)

c) if Op € ¥ and f(u)R'f(v), then S,v Iy ¢ implies S, u lFy Oy

d) f(u) = f(v) if and only if u and v satisfy precisely the same formulas in X.

Say that a formula £ of the p-calculus admits filtration if, for every model S, there is a
finite set of formulas ¥ containing &, and a filtration S’ of S through X such that §', f(s) I, ¢
iff S, sy ¢, for each s in S and each ¢ € 3.

Prove that the formula px.Ox does not admit filtration.

Exercise 2.6 We write ¢ = 9 to denote that v is a local consequence of o, that is, if for all
pointed Kripke models (S, s) it holds that S, s IF4 ¢ implies S, s IFg 9.

(a) Show that pz.vy.a(x,y) = vy.ux. a(z,y), for all formulas a.
(b) Show that pz.uy. a(zr,y) = py.px. a(z,y), for all formulas a.

(¢) Show that pz.(x Vy(z)) Adé(x) = px.y(x) Ad(z), for all formulas -, 6.

Exercise 2.7 (boolean p-calculus) Show that the least and greatest fixpoint operators do
not add expressive power to classical propositional logic, or, in other words, that the modality-
free fragment of the modal u-calculus is expressively equivalent to classical propositional logic.
(Hint: use Exercise 2.6(c).)
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Exercise 2.8 (co-induction) Let ¢, be any two clean formulas of the modal p-calculus
such that v is free for x in (; it will also be convenient to assume that ¢ is not a subformula
of . Show by a game semantic argument that the following so-called ‘co-induction principle’
holds for greatest fixpoints: if ¢ = ¢[¢)/x], then ¢ | va.p also. Here we write ‘=’ for the
local consequence relation, as in Exercise 2.6.

Exercise 2.9 (injectivity of substitution) Prove Proposition 2.51.



3 Fixpoints

The game-theoretic semantics of the modal p-calculus introduced in the previous chapter has
some attractive characteristics. It is intuitive, relatively easy to understand, and, as we shall
see further on, it can be used to prove some important properties of the formalism. However,
it has some drawbacks as well. For instance, the evaluation games of the previous chapter
have only been defined for formulas that are either clean or tidy. The game semantics can
be extended to arbitrary formulas but this will make the game somewhat more involved, in
particular if we want to define evaluation games for formulas that are not in negation normal
form.

Furthermore, the game-theoretical semantics is not compositional; that is, the meaning
of a formula is not defined in terms of the meanings of its subformulas. These shortcomings
vanish in the algebraic semantics that we are about to introduce. In order to define this term,
we first consider an example.

Example 3.1 Recall that in Example 2.1, we informally introduced the formula pux.p Vv gz
as the smallest fixpoint or solution of the ‘equation’ x = pV C4x.

To make this intuition more precise, we have to look at the formula 6 = p VvV g4z as an
operation. The idea is that the value (that is, the extension) of this formula is a function
of the value of z, provided that we keep the value of p constant. Varying the value of x
boils down to considering ‘z-variants’ of the valuation V of S = (S, R, V). Let, for X C S,
V[z +— X] denote the valuation that is exactly like V' apart from mapping = to X, and let
S[z + X] denote the z-variant (S, R, V[z — X]) of S. Then [§]5**] denotes the extension
of § in this z-variant. It follows from this that the formula § induces the following function
65 on the power set of S:

5S(X) = [6]Sl==X],

In our example we have

02(X) = V(p) U (R)(X).

Now we can make precise why pz.pV $g4z is a fixpoint formula: its extension, the set [ux.pV
4], is a fixpoint of the map 65:

[pe.pV Cqz] = V(p) U (R)([pz.p V Caz]).

In fact, as we shall see in this chapter, the formulas ux.pV Cgx and vr.pV Ogx are such that
their extensions are the least and greatest fixpoints of the map &5, respectively. <

It is worthwhile to discuss the theory of fixpoint operators at a more general level than
that of modal logic. Before we turn to the definition of the algebraic semantics of the modal
u-calculus, we first discuss the general fixpoint theory of monotone operations on complete
lattices.



3-2 Fixpoints

3.1 General fixpoint theory
Basics
In this chapter we assume some familiarity? with partial orders and lattices (see Appendix A).

Definition 3.2 Let P and P’ be two partial orders and let f : P — P’ be some map. Then f
is called monotone or order preserving if f(x) <’ f(y) whenever x < y, and antitone or order
reversing if f(z) >’ f(y) whenever x < y. <

Definition 3.3 Let P = (P, <) be a partial order, and let f : P — P be some map. Then
an element p € P is called a prefixpoint of f if f(p) < p, a postfizpoint of f if p < f(p), and
a fizpoint if f(p) = p. The sets of prefixpoints, postfixpoints, and fixpoints of f are denoted
respectively as PRE(f), POS(f) and FIX(f).

In case the set of fixpoints of f has a least (respectively greatest) member, this element
is denoted as LFP.f (GFP.f, respectively). These least and greatest fixpoints may also be
called extremal fixpoints. <

The following theorem is a celebrated result in fixpoint theory.

Theorem 3.4 (Knaster-Tarski) Let C = (C,\/, \) be a complete lattice, and let f : C — C
be monotone. Then f has both a least and a greatest fixrpoint, and these are given as

LFP.f = /\PRE(f), (20)
GFP.f = \/POS(f). (21)

Proof. We will only prove the result for the least fixpoint, the proof for the greatest fixpoint
is completely analogous.

Define ¢ := A PRE(f), then we have that ¢ < z for all prefixpoints x of f. From this
it follows by monotonicity that f(¢) < f(z) for all x € PRE(f), and hence by definition of
prefixpoints, f(q) < z for all x € PRE(f). In other words, f(q) is a lower bound of the set
PRE(f). Hence, by definition of ¢ as the greatest such lower bound, we find f(q) < ¢, that
is, q itself is a prefixpoint of f.

It now suffices to prove that ¢ < f(q), and for this we may show that f(q) is a prefixpoint
of f as well, since ¢ is by definition a lower bound of the set of prefixpoints. But in fact, we
may show that f(y) is a prefixpoint of f for every prefixpoint y of f — by monotonicity of f
it immediately follows from f(y) <y that f(f(y)) < f(y). QED

Another way to obtain least and greatest fixpoints is to approximate them from below
and above, respectively.

Definition 3.5 Let C = (C,\/, \) be a complete lattice, and let f : C' — C be some map.
Then by ordinal induction we define the following maps on C:

fB(C) = G fl?(c) =G
fitie) = f(fi(e) fotie) = f(f(0),
fale) == Vacr fi(0) f(e) = Nacr £,

2Readers lacking this background may take abstract complete lattices to be concrete power set algebras.
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where A denotes an arbitrary limit ordinal. <

Proposition 3.6 Let C = (C,\/, \) be a complete lattice, and let f : C — C be monotone.
Then f is inductive, that is, f7(L) < fﬁ(J_) for all ordinals o and B such that a < 3.

Proof. We leave this proof as an exercise to the reader. QED
Given a set C, we let |C| denote its cardinality or size.

Corollary 3.7 Let C = (C,\/, \) be a complete lattice, and let f : C — C be monotone.
Then there is some a of size at most |C| such that LFP.f = fi(L).

Proof. By Proposition 3.6, f is inductive, that is, f¥(L) < fﬁ(J_) for all ordinals o and S
such that a < 3. It follows from elementary set theory that there must be two ordinals «, 8 of
size at most |C] such that f(L) = f,’f (L). From the definition of the approximations it then
follows that there must be an ordinal a such that f7(L) = f/‘}*l(L), or, equivalently, fi(L)

is a fixpoint of f. To show that it is the smallest fixpoint, one may prove that fﬁ(J_) < LFP.f
for every ordinal 3. This follows from a straightforward ordinal induction. QED

Definition 3.8 Let C = (C,\/, ) be a complete lattice, and let f : C — C be monotone.
The least ordinal  such that f7(L) = fﬁ‘“(J_) is called the unfolding ordinal of f. <
3.2 Boolean algebras

In the special case that the complete lattice is in fact a (complete) boolean algebra, there is
more to be said.

Dual maps

In the case of monotone maps on complete boolean algebras, the least and greatest fixed
points become interdefinable, using the notion of (boolean) duals of maps.

Definition 3.9 A complete boolean algebra is a structure B = (B, \/, A, —) such that (B, \/, \)
is a complete lattice and (B, V, A, —, L, T) is a boolean algebra, where V and A are the binary
versions of \/ and /\, respectively, and L :=\/ @, T := A . <

In a boolean algebra B, the complementation operation — : B — B is an antitone (order-
reversing) map such that t A —z = L and xV —z = T for all z € B. If B is complete it holds
that —=\/ X = A{-z|z€e X} and —AX =\{—2 ]|z € X}.

Definition 3.10 Let B = (B,\/, A\, —) be a complete boolean algebra. Given a map f: B —
B, the function f? : B — B given by

is called the (boolean) dual of f. <
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Proposition 3.11 Let B = (B,\/, \,—) be a complete boolean algebra, and let g : B — B be
monotone. Then ¢° is monotone as well, (ga)8 =g, and

LFP.¢° = —GFP.y,
GFP.¢° = —LFP.g.
Proof. We only prove that LFP.g° = —GFP.g, leaving the other parts of the proof as

exercises to the reader.
First, note that by monotonicity of ¢, the Knaster-Tarski theorem gives that

LFP.g° = \ PRE(¢?).
But as a consequence of the definitions, we have that
b € PRE(¢?) <= —b e POS(y).
From this it follows that
LFP.g° = A{b|-bePOS(g)}
= A{-a|aePOS(g)}

= —\/POS(g)
= —GFP.yg

which finishes the proof of the Theorem. QED

Further on we will see that Proposition 3.11 allows us to define negation as an abbreviated
operator in the modal p-calculus.

Games

In case the boolean algebra in question is in fact a power set algebra, a nice game-theoretic
characterization of least and greatest fixpoint operators can be given.

Definition 3.12 Let S be some set and let F' : p(S) — @(S) be a monotone operation.
Consider the unfolding games U*(F') and UY(F). The positions and admissible moves of
these two graph games are the same, see Table 6.

Position | Player | Admissible moves
se s 3 {Ae€p(S)|se F(A)}
A€ p(5) N A

Table 6: Unfolding games for F': p(S) — (S5)

The winning conditions of finite matches are standard (the player that got stuck loses
the match). The difference between U*(F') and U”(F’) shows up in the winning conditions of
infinite matches: 3 wins the infinite matches of U”(F'), but V those of U (F). <
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Observe that the positions in a match of the unfolding game alternate between ‘state
positions’ s, where 3 needs to pick a subset A C S such that s belongs to F'(A), and ‘subset
positions’ A, of which V has to pick an element.

Example 3.13 In fact, we have already seen an example of the unfolding game " in the
bisimilarity game of Definition 1.26. Given two Kripke models S and S, consider the map
F: (S x S’) given by

F(Z):={(s,s") € S x S| Z is a local bisimulation for s and s'},

then it is straightforward to verify that B(S,S’) is nothing but the unfolding game U (F). <

The following proposition substantiates the slogan that ‘v means unfolding, x4 means finite
unfolding’.

Theorem 3.14 Let S be some set and let F : p(S) — p(S) be a monotone operation. Then
1. GFP.F ={se S| s e Wing(U"(F))},
2. LFP.F ={se S|s e Wing(U"(F))},

Proof. For the inclusion D of part 1, it suffices to prove that W := S N Wing(U¥(F)) is a
postfixpoint of F"
W C F(W). (22)

Let s be an arbitrary point in W, and suppose that 3’s winning strategy tells her to choose
A C S at position s. Then no matter what element s; € A is picked by V, 9 can continue the
match and win. Hence, all elements of A are winning positions for 3. But from A C W it
follows that F'(A) C F(W), and by the legitimacy of 3’s move A at s it holds that s € F(A).
We conclude that s € F(W), which proves (22).

For the converse inclusion C of part 1 of the proposition, take an arbitrary point s €
GFP.F. We need to provide 3 with a winning strategy in the unfolding game U" (F') starting
at s. This strategy is actually as simple as can be: 3 should always play GFP.F. Since
GFP.F = F(GFP.F), this strategy prescribes legitimate moves for 3 at every point in GFP.F'.
And, if she sticks to this strategy, 3 will stay alive forever and thus win the match, no matter
what V’s responses are.

For the second part of the theorem, let W denote the set W := SNWing(U#(F')) of states
in S that are winning positions for 3 in U*(F’). We first prove the inclusion W C LFP.F.
Clearly it suffices to show that all points outside the set LFP.F' are winning positions for V.

Consider a point s ¢ LFP.F. If s ¢ F(A) for any A C S then 3 is stuck, hence loses
immediately, and we are done. Otherwise, suppose that 3 starts a match of U*(F') by playing
some set B C S with s € F(B). We claim that B is not a subset of LFP.F', since otherwise we
would have F(B) C F(LFP.F) C LFP.F; which would contradict the fact that s ¢ LFP.F.
But if B Z LFP.F then V may continue the match by choosing a point s; € B\ LFP.F. Now
Y can use the same strategy from s; as he used from s, and so on. This strategy guarantees
that either 3 gets stuck after finitely many rounds (in case ¥ manages to pick an s, for which
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there is no A such that s, € F(4,,)), or else the match will last forever. In both cases V wins
the match.

For the opposite inclusion C of part 2, it suffices to show that W is a prefixpoint of F,
that is, F/(WW) C W. For that purpose, let s € S be such that s € F(W). In order to show
that s € W we need to provide 3 with a winning strategy in U*(F'), starting at s. But this
is straightforward: since s € F(W), the set W itself is a legitimate move for 3 at position s.
Then, after V picks some element ¢t € W, she can simply continue with her strategy in U*(F)
that is winning when starting at position t. QED

3.3 Vectorial fixpoints

Suppose that we are given a finite family {Cy,...,C,} of complete lattices, and put C =
[[,<i<,,Ci. Given a finite family of monotone maps fi,..., f, with f; : C — C;, we may
define the map f : C — C given by f(c) := (fi(c),..., fa(c)). Monotonicity of f is an easy
consequence of the monotonicity of the maps f; separately, and so by completeness of C, f
has a least and a greatest fixpoint. In this context we will also use vector notation, for
instance writing

T fi(zi, .. zn)
€2 f2($17"'733n)
1 .
Tn oz, ... x)
for LFP.f. An obvious question is whether one may express these multi-dimensional fixpoints
in terms of one-dimensional fixpoints of maps that one may associate with fq,..., fn.

The answer to this question is positive, and the basic observation facilitating the compu-
tation of multi-dimensional fixpoints is the following so-called Bekic¢ principle.

Proposition 3.15 Let Dy and Dy be two complete lattices, and let f; : D1 x Dy — D; for
1= 1,2 be monotone maps. Then

?7( @ ) ( fi(z,y) > _ < na.fi(z,ny.f2(z,y)) )
y )\ falz,y) ny-fa(nz-fi(z,y),y)
where n uniformly denotes either p or v.

Proof. Define D := 1y x Dy, and let f : D — D be given by putting f(d) := (f1(d), f2(d)).
Then f is clearly monotone, and so it has both a least and a greatest fixpoint.

By the order duality principle it suffices to consider the case n = p of least fixed points
only. Suppose that (a1, asz) is the least fixpoint of f, and let b; and by be given by

{bl = fol(-xauyf?(xvy))v
by = pyfo(pz.fi(z,y),y).

Then we need to show that a; = b1 and as = bs.
By definition of (a1, as) we have

{al = fi(a1,a2),

az = fa(ar,a2),
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whence we obtain
{ px.fi(z,a2) < a; and
py-fo(a,y) < az,
From this we obtain by monotonicity that

fa(pz.fi(z, a2), a2) < fa(a1, a2) = az,

so that we find by < ag by definition of by. Likewise we may show that b < a;.
Conversely, by definition of by and bs we have

< b > _ < J1(br, py.-f2(b1, y)) )

ba fo(pz. f1(x,b2), b2)

Then with ¢ := py.f2(b1,y), we have by = f1(b1,c2). Also, by definition of co as a fixpoint,
ca = fa(b1, ca). Putting these two identities together, we find that

(o) - (o) -(2)

o fa(b1, c2) )

Hence by definition of (aj,as), we find that a; < b; (and that as < cg, but that is of less
interest now). Analogously, we may show that as < bs. QED

Proposition 3.15 allows us to compute the least and greatest fixpoints of any monotone
map f on a finite product of complete lattices in terms of the least and greatest fixpoints of
operations on the factors of the product, through a elimination method that is reminiscent of
Gaussian elimination in linear algebra.

To see how it works, suppose that we are dealing with lattices Cq,...,C,+1,C and maps
fi,--y fat1, f, just as described above, and that we want to compute nZ. f, that is, find the
elements ay,...,a,+1 such that

ai 1 fi(@1, . @, Tpygr)
a9 xI9 fg(xl,...,a:n,mnH)
=7
An+41 Tn+1 fn—i—l(xlv cee s Iy l'n—&-l)
We may define
In1(T1, - Tn) = NTpg1-fop1 (15 -0 Tg1),

and then use Proposition 3.15, with D; = C; x --- x Cy, and Dy = C,,41, to obtain

ay ol fl(l'l,...,xn,gn+1(x1,...,$n))
as T fo(z1, o T, g1 (215 - - T0))
=1 . . .
an Tn fo(@1, oo Ty Gnr1 (21, -+, Tp))
We may then inductively assume to have obtained the tuple (ai,...,ay,). Finally, we may
compute an4+1 := gn+1(at,...,an).

Observe that in case C; = C; for all 4,j and the operations f; are all term definable in
some formal fixpoint language, then each of the components a; of the extremal fixpoints of f
can also be expressed in this language.
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3.4 Algebraic semantics for the modal p-calculus
Basic definitions

In order to define the algebraic semantics of the modal p-calculus, we need to consider formulas
as operations on the power set of the (state space of a) transitions system, and we have to
prove that such operations indeed have least and greatest fixpoints. In order to make this
precise, we need some preliminary definitions.

Definition 3.16 Given an LTS S = (S, V, R) and subset X C S, define the valuation V[z —
X| by putting

_ V) ify#az,
Vier Xl(y) = { X if y=ux.
Then, the LTS Sz — X] is given as the structure (S, V]zr — X|, R). <

Now inductively assume that [p]° has been defined for all LTSs. Given a labelled
transition system S and a propositional variable x € P, each formula ¢ induces a map
@S 1 9(S) = p(S) defined by

Pa(X) = [

Example 3.17 a) Where ¢, = p V z we have (0q)3(X) = [pV z]SF~X = V(p) U X.
b) Where ¢, = T we have ()5 (X) = [z]3"~X] = 5\ X.
¢) Where @, = pV Ogz we find (00)S(X) = [pV Cqz]PF=X] = V(p) U (Rg) X
d) Where @4 = O4Z we find ()3 (X) = [©qZ]SFX = (Rg) (S \ X). <

Remark 3.18 Clearly, relative to a model S, X is a fixpoint of goi iff X = gp§ (X); a prefix-
point iff ¢(X) C X and a postfixpoint iff X C ¢°(X).

Writing S IF ¢ for S = [[cp]]S, an alternative but equivalent way of formulating this is to
say that in S, X is a prefixpoint of a formula ¢(x) iff S[z — X] IF ¢ — x, a postfizpoint iff
S[z — X]IFz — ¢, and a fixpoint iff Sz — X] IF z < ¢. <

Example 3.19 Consider the formulas of Example 3.17.

a) The sets V(p) and S are fixpoints of ¢,, as is in fact any X with V(p) C X C S.

b) Since we do not consider structures with empty domain, the formula Z has no fixpoints
at all. (Otherwise X would be identical to its own complement relative to some nonempty
set S.)

c¢) Two fixpoints of ¢, were already given in Example 2.1.

d) Consider any model Z = (Z, S, V') based on the set Z of integers, where S = {(z,z+1) |
z € Z} is the successor relation. Then the only two fixpoints of ¢4 are the sets of even and
odd numbers, respectively. <

In particular, it is not the case that every formula has a least fixpoint. If we can guarantee
that the induced function ¢S of ¢ is monotone, however, then the Knaster-Tarski theorem
(Theorem 3.4) provides both least and greatest fixpoints of ¢5. Precisely for this reason, in
the definition of fixpoint formulas, we imposed the condition in the clauses for nz.p, that x
may only occur positively in . As we will see, this condition on x guarantees monotonicity
of the function ¢S.
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Definition 3.20 Given a uMLp-formula ¢ and a labelled transition system S = (S, V, R), we
define the meaning [¢]° of ¢ in S, together with the map ¢S : p(S) — p(S) by the following
simultaneous formula induction:

[L]® = @ [T7® = S
[p]° = Vip) [p]° = S\V(p)
[evel® = [el®u [yl [eAel® = [el®n[vl®
[Cae]® = (Ra)le]® [Bael® = [Rdlle]®
[uz.¢]® = NPRE(g;) [vee]® = UPOS(¥)
The map ¢, for = € Prop, is given by ¢S(X) = [¢] S, <

Theorem 3.21 Let ¢ be an pMLp-formula, in which x occurs only positively, and let S be a
labelled transition system. Then [uz.¢]° = LFP.¢S, and [vz.¢]® = GFP.45.

Proof. This is an immediate consequence of the Knaster-Tarski theorem, provided we can
prove that ¢ is monotone in x if all occurrences of x in ¢ are positive. We leave the details
of this proof to the reader (see Exercise 3.2). QED

Negation in the modal p-calculus

It follows from the definitions that the set uMLp is closed under taking negations. Informally,
let ~¢p be the result of simultaneously replacing all occurrences of T with L, of p with p and
vice versa (for free variables p), of A with Vv, of Oy with &4, of pz with v, and vice versa, while
leaving occurrences of bound variables unchanged. As an example, ~(ux.p V Oz) = ve.pAQz.
Formally, it is easiest to define ~¢ via the boolean dual of .

Definition 3.22 Given a modal fixpoint formula ¢, we define its boolean dual ¢? inductively
as follows:

19 = T T = 1

p’ = p (»? =D
(V) = Ay’ (eAp)? = ?vy?
(Cap)® = DOayp? (Qap)? = g’
(pz.)? = va.p? (vr.@)? = pw.e?

Based on this definition, we define the formula ~¢ as the formula p?[p = | p € FV ()]
that we obtain from ¢? by replacing all occurrences of p with p, and vice versa, for all free
proposition letters p € FV (y). <

Example 3.23 Here are two examples:

o = prpVo(rAg) v = vpuxpV<O(xAg)
808 = vepAO(xVY) wa = pprz.pAO(zV7Y)
~p = vapAO(z V) ~p = pprva.p AO(zVQ)

Note the difference between ~¢ and ~1 with respective to the propositional variable p, which
is free in ¢ but bound in . <
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The following proposition states that the operation ~ functions as a standard boolean
negation. We let ~gX := S\ X denote the complement of X in S.

Proposition 3.24 Let ¢ be a modal fixpoint formula. Then ~g corresponds to the negation
of p, that is,

[~¢]° = ~sle]® (23)
for every labelled transition system S.

Proof. We first show, by induction on ¢, that ¢? corresponds to the boolean dual of ¢.
For this purpose, given a labelled transition system S = (S, R, V), we let S~ denote the
complemented model, that is, the structure (S, R,V"), where V™~ (p) := ~gV(p). Then we
claim that

[¢°1° = ~sle]®", (24)
and we prove this statement by induction on the complexity of ¢. Leaving all other cases as
exercises for the reader, we concentrate on the inductive case where ¢ is of the form pz.2. In
this case the left hand side of (24) evaluates to

[(pz)?]° = [vaap?]® (Definition (pz.1)?)
= GFP.(¢?)S (Theorem 3.21)
while for the right hand side we find
~slpxy]s” = ~gLFP.4pS” (Theorem 3.21)
= GFP.(¢v57)? (Proposition 3.11)

In other words, to prove (24) it suffices to show that
(¥)z = (w2 )’ (25)

To this aim, take an arbitrary subset U of S. Applying the map on the left hand side of (25)
to U, we find

W)5(U) = [P,
while the map on the right hand side yields
(WY (U) = ~st (msU) = ~s[9] €50 = g [u] Clmt)™,

so that by the inductive hypothesis we find that (?)3(U) = (¥57)?(U), as required to prove
(25), and thus (24).

In other words, we have shown that the formula ¢? indeed behaves as the boolean dual
of ¢. To see that, likewise, the formula ~¢ behaves as the negation of ¢, we now show how
to derive (23) from (24). First observe that for any formula x we have

Ixp=7pe FVO)I® = - (26)
But then, taking ¢? for x, we find that
[~elf =[P =P lp € FV()]]° = [¢°]° = ~s[e]®7 = ~s[¢]°,

where the first equality holds by the definition of ~¢, the second by (26), the third equality
is (24), and the fourth equality follows from the trivial observation that (S™~)~ = S. QED
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Remark 3.25 It follows from the Proposition above that we could indeed have based the
language of the modal p-calculus on a smaller alphabet of primitive symbols. Given a set D of
atomic actions, we could have defined the set of modal fixpoint formulas using the following
induction:

pu=Lp| | eVe | Cqp | pre

where p and x are propositional variables, d € D, and in ux.p, all free occurrences of x must
be positive (that is, under an even number of negation symbols). Here we define F'V(—yp) =
FV(p) and BV (—p) = BV (p).

In this set-up, the constant T and the connectives A and Oy are defined using the standard
abbreviations, while for the greatest fixpoint operator we may put

vr.p = —pr.op(—r).

Note the triple use of the negation symbol here, which can be explained by Proposition 3.11
and the observation that we may think of —p(—z) as the formulas 0. <

Other immediate consequences

Earlier on we defined the notions of clean and guarded formulas.

Proposition 3.26 FEvery fizpoint formula is equivalent to a clean formula, and hence, to a
tidy one.

Proof. We leave this proof as an exercise for the reader. QED
Proposition 3.27 Every fixpoint formula is equivalent to a guarded formula.

Proof.(Sketch) We prove this proposition by formula induction. Clearly the only nontrivial
case to consider concerns the fixpoint operators. Consider a formula of the form nz.j(z),
where 0(x) is guarded and clean, and suppose that = has an unguarded occurrence in §.

First consider an unguarded occurrence of = in §(x) inside a fixpoint subformula, say, of
the form 0y.y(z,y). By induction hypothesis, all occurrences of y in y(z,y) are guarded.
Obtain the formula & from § by replacing the subformula 0y.y(z,y) with v(z,8y.v(x,v)).
Then clearly § is equivalent to §, and all of the unguarded occurrences of x in § are outside
of the scope of the fixpoint operator 6.

Continuing like this we obtain a formula nz.5(x) which is equivalent to nz.6(x), and in
which none of the unguarded occurrences of x lies inside the scope of a fixpoint operator. That
leaves A and V as the only operation symbols in the scope of which we may find unguarded
occurrences of x.

From now on we only consider the case where n = pu, leaving the very similar case where
n = v as an exercise. Clearly, using the laws of classical propositional logic, we may bring the
formula ¢ into conjunctive normal form

(xVai(z)) AN AxVay(z)) A pB(x), (27)
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where all occurrences of  in ay,...,a, and 8 are guarded. (Note that we may have § =T,
or a; = L for some 17.)
Clearly (27) is equivalent to the formula

0'(x) := (x V afz)) A B(z),

where o« = a1 A -+ A a,. Thus we are done if we can show that

pr.d' (z) = px.a(z) A B(x). (28)

Since a A 8 implies ¢’ it is easy to see (and left for the reader to prove) that pz.a A 5 implies
px.d'. For the converse, it suffices to show that ¢ := pz.a(z) A B(z) is a prefixpoint of ¢'(z).
But it is not hard to derive from ¢ = a(¢) A S(p) that

5'(p) = (e Valp) AB(e) = () AB(p) Vale) AB(e) = alp) AB(e) = ¢,

which shows that ¢ is in fact a fixpoint, and hence certainly a prefixpoint, of §'(z). QED
Combining the proofs of the previous two propositions one easily shows the following.

Proposition 3.28 Every fixpoint formula is equivalent to a clean, guarded formula, and
hence, to a tidy, guarded one.

Remark 3.29 The equivalences of the above propositions are in fact effective in the sense
that there are algorithms for computing an equivalent clean and/or guarded equivalent to an
arbitrary formula in gML. It is an interesting question what the complexity of these algorithms
is, and what the minimum size of the equivalent formulas is. We will return to this issue later
on, but already mention here that there are formulas that are exponentially smaller than
any of their clean equivalents. The analogous question for guarded transformations, i.e.,
constructions that provide guarded equivalents to an arbitrary formula, is open. <

3.5 Adequacy

In this section we prove the equivalence of the two semantic approaches towards the modal -
calculus. Since the algebraic semantics is usually taken to be the more fundamental notion, we
refer to this result as the Adequacy Theorem stating, informally, that games are an adequate
way of working with the algebraic semantics.

» For the time being we only consider the subformula game.

Theorem 3.30 (Adequacy) Let ¢ be a clean uMLp-formula. Then for all labelled transition
systems S and all states s in S:

se ¢ < (&) € Wina(E(€,S)). (29)

Proof. The theorem is proved by induction on the complexity of £&. We only discuss the
inductive steps where ¢ is of the form nz.J (with 7 denoting either p or v), leaving the other
cases as exercises to the reader.
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Preparatory observations Our proof for these inductive cases will involve three games:
the unfolding game for 6%, and the evaluation games for ¢ and &, respectively. It is based on
two key observations: One concerns the nature of the unfolding game for 65 and its role in
the semantics for nz.J; the other observation concerns the similarity between the evaluation
games for £ and for §.

1. Starting with the first observation, note that by definition of the algebraic semantics
of the fixpoint operators, the set [nz.6]° is the least/greatest fixed point of the map
65 p(S) — p(9), and that by our earlier Theorem 3.14 on unfolding games, we have

[n.6]° = Wing(U"(65)) N S. (30)
Hence, in order to prove (29), it suffices to show that, for any state sq:
so € Wing(U"(0%)) <= (&,50) € Wing(E(E,S)). (31)

In other words, the crucial tasks in the proof of this inductive step concern the trans-
formation of a winning strategy for 3 in the unfolding game U"(05)@sq to a winning
strategy for her in the evaluation game £(§,S)Q(¢, sp), and vice versa.

Given the importance of the unfolding game for 65 then, let us look at it in a bit more
detail. Note that a round of this game, starting at position s € S, consists of 3 picking
a subset A C S that is subject to the constraint that s € 65(A4) = [6]5*4]. But here
the inductive hypothesis comes into play: it implies that, for all A C S, we have

s € 05(A) <= (6,5) € Wing(£(5,S[z — A))). (32)

In other words, each round of the unfolding game for the map 65 crucially involves the
evaluation game for the formula J, played on some x-variant S[z +— A] of S.

2. This leads us to the comparison between the games G := £(&,S) and G4 := £(0, S|z —
A]). The second key observation in the inductive step for the fixpoint operators is that
these games are very similar indeed. For a start, the positions of the two games are
essentially the same. Positions of the form (&, ), which exist in the first game but not
in the second, are the only exception — but in G, any position (§,t) is immediately
and automatically succeeded by the position (d,¢) which does exist in the second game.
What is important is that the positions for 3 are exactly the same in the two games,
and thus we may apply her positional strategies for the one game in the other game
as well. The only real difference between the games shows up in the rule concerning
positions of the form (z,u). In G4, = is a free variable (x € FV(J)), so in a position
(x,u) the game is over, the winner being determined by u being a member of A or not.
In G however, z is bound, so in position (z,u), the variable z will get unfolded to 9.

Combining these two observations, the key insight in the proof of (31) will be to think of
£(£,S) as a variant of the unfolding game U := U"(55) where each round of U corresponds to
a version of the game Gr, with T being the subset of S picked by 3 in &/. We are now ready
for the details of the proof of (31).
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For the direction from left to right of (31), suppose that 3 has a winning strategy
in the game U starting at some position sg. Without loss of generality (see Exercise 3.7) we
may assume that this strategy is positional. Thus we may represent it as a map T : S —
©(S), where we will write T, rather than 7'(s). By the legitimacy of this strategy, for every
s € Wing(U) it holds that s € 65(Ts). So by the inductive hypothesis (32), for each such s
we may assume the existence of a winning strategy fs for 3 in the game G, @(d,s). Given
the similarities between the games G and G, (see the discussion above), this strategy is also
applicable in the game GQ(J, s), at least, until a new position of the form (z,t) is reached.

This suggests the following strategy g for 3 in GQ(¢, s¢):

1. after the initial automatic move, the position of the match is (4, sg); 3 first plays her
strategy fs;

2. each time a position (z, s) is reached, the match automatically moves to position (d, s),
where we distinguish cases:

(a) if s € Wing(U) then 3 continues with fs;
(b) if s ¢ Winz(/) then 3 continues with a random strategy.

First we show that this strategy guarantees that whenever a position of the form (z, s) is
visited, s belongs to Wing(U), so that case (b) mentioned above never occurs. The proof is by
induction on the number of positions (z, s) that have been visited already. For the inductive
step, if s is a winning position for 3 in U, then, as we saw, fs is a winning strategy for 3 in
the game G, @Q(J, s). This means that if a position of the form (z,t) is reached, the variable
x must be true at ¢t in the model S[x — T}, and so ¢ must belong to the set Ts. But by
assumption of the map 7" : S — p(S) being a winning strategy in U, any element of T is
again a member of Wing(Uf).

In fact we have shown that every unfolding of the variable x in G marks a new round in
the unfolding game U. To see why the strategy g guarantees a win for 3 in GQ(¢, sg), consider
an arbitrary GQ(¢, sg)-match 7 in which 3 plays g. Distinguish cases.

First suppose that z is unfolded only finitely often. Let (z, s) be the last basic position in
7 where this happens. Given the similarities between the games G and Gr,, the match from
this moment on can be seen as both a g-guided G-match and an f,-guided Gz -match. As we
saw, fs is a winning strategy for 3 in the game Gr,@Q(d, s). But since no further position of
the form (x,t) is reached, and G and G, only differ when it comes to z, this means that 7 is
also a win for 3 in G.

If = is unfolded infinitely often during the match 7, then by the fact that £ = nz.J, it is
the highest variable that is unfolded infinitely often. We have to distinguish the case where
n = v from that where n = p. In the first case, 3 is the winner of the match 7, and we are
done. If n = pu, however, x is a least fixpoint variable, and so 3 would lose the match .
We therefore have to show that this situation cannot occur. Suppose for contradiction that
S1,89,... are the positions where z is unfolded. Then it is easy to verify that the sequence
501s,517T%, . .. constitutes a ¢/-match in which 3 plays her strategy 7'. But this is not possible,
since T was assumed to be a winning strategy for 3 in the least fixpoint game U = M“(&E).



Lectures on the modal u-calculus 3-15

For the direction from right to left of (31), we will show how each positional winning
strategies f for J in G induces a positional strategy for her in I/, and that this strategy Uy is
winning for her starting at every position s € W := {s € S| (&, s) € Wing(G)}.

So fix a positional winning strategy f for 3 in G; that is, 3 is guaranteed to win any
f-guided match starting at a position (p,t) € Wing(G). Observe that, as discussed above, we
may and will treat f as a positional strategy in each of the games G4 as well.

Given a state s € W, we let Tf(s) be the strategy tree induced by f in G4@Q(4, s), where A
is some arbitrary subset of S. That is, the nodes of T consist of all f-guided finite matches
in G4 that start at (0,s). In more detail, the root of this tree is the single-position match
(0,5); to define the successor relation of Ty, let ¥ be an arbitrary f-guided match starting
at position first(X) = (0, s). If last(X) is a position owned by 3, then ¥ will have a single
successor in Ty, viz., the unique extension of ¥ with the position f(X) picked by f. On the
other hand, if last(X) is owned by V, then every possible continuation X - b, where b is an
admissible position picked by V, is a successor of X.

We let Uy(s) be the set of states u such that the position (z,u) occurs as the last element
(x,u) = last(X) of some match ¥ in Tf(s). It is easy to see that any Ga-match ¥ ending in a
position of the form (x,u), is finished immediately, and thus provides a leaf of the tree Ty. It
is also an easy consequence of the definitions that, whenever t € Uy(s) for some s € W, then
there is an f-guided match ¥ such that first(2X,;) = (9, s) and last(3s+) = (z,t). Note that
this match 3, can be seen both as a (full) G4-match and as a (partial) G-match.

Given our definition of a set Uf(s) C S for every s € W, in effect we have defined a map

Uf W — p(S)

CrAmM 1 Viewing this map Uy as a positional strategy for 3 in U, we claim that in fact it is
a winning strategy for her in UQ@sg.

Proor or CrLAIM We need two auxiliary claims on Uy. First we observe that
if s € W then s € 65(Uf(s)). (33)

For a proof of (33), it is obvious from the definition of Uy(s) that f is a positional winning
strategy for 3 in Gy, (s) = €(6,S[x — Uy(s)]) starting at (6,s). But then by the inductive
hypothesis on ¢ we obtain that S[z + Uy(s)], s I d, or, equivalently, s € 65(Ug(s)).
Second, we claim that
if s € W then Uy(s) C W. (34)

To see this, first note that if s € W then by definition (&, s) € Wing(G); but from this it is
immediate that (9, s) € Wing(G), and since we assumed f to be a positional winning strategy
for 3 in G, it follows by definition of Uy(s) that for every u € Uy(s) the position (z,u) is
winning for 3 in Wing(G). But from this it is easy to derive that both (J,u) and (&, u) are
winning position for 3 in G as well. The latter fact then shows that u € W and since u was
an arbitrary element of Us(s), (34) follows.

We can now prove that Uy is a winning strategy for 3 in /@sg. First of all, it follows
from (33) that Ug(s) is a legitimate move in I for every position s € W. From this and (34)
we may conclude that 3 never gets stuck in an Uy-guided U-match starting at sq; that is, she
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wins every finite Uyp-guided U-match. In case n = v this suffices, since in UG” (65) all infinite
matches are won by 3.

Where 7 = u we have a bit more work to do, since in this case all infinite matches of U (55)
are won by V. Suppose for contradiction that ¥ = soUf(s0)s1Uf(s1)--- would be an infinite
U-guided match of U#(65). Then for every i € w we have that s;+1 € Uy(s;), so that there
is a partial f-guided match ¥; = X5, , with first(3;) = (0, s;) and last(3;) = (x,s;41). But
then it is straightforward to verify that the infinite match g := ¥y -X; - X9 --- we obtain by
concatenating the individual f-guided matches 3;, constitutes an infinite f-guided G-match
with first(Xg) = first(Xo) = (€, s0). Since the highest fixpoint variable unfolded infinitely
often during g obviously would be z, this match would be lost by 3. Here we arrive at the
desired contradiction, since (£, so) € Wing(G), and f was assumed to be a positional winning
strategy in G. <

QED

Convention 3.31 In the sequel we will use the Adequacy Theorem without further notice.
Also, we will write S, s I ¢ in case s € [[cp]]S, or, equivalently, S, s I-4 ¢.

» Adequacy of the closure game to be discussed and proved.

Notes

What we now call the Knaster-Tarski Theorem (Theorem 3.4) was first proved by Knaster [14]
in the context of power set algebras, and subsequently generalized by Tarski [27] to the
setting of complete lattices. The Beki¢ principle (Proposition 3.15) stems from an unpublished
technical report.

» more notes and references to be supplied

As far as we know, the results in section 3.2 on the duality between the least and the
greatest fixpoint of a monotone map on a complete boolean algebra, are folklore. The char-
acterization of least and greatest fixpoints in game-theoretic terms is fairly standard in the
theory of (co-)inductive definitions, see for instance Aczel [1]. The equivalence of the algebraic
and the game-theoretic semantics of the modal p-calculus (here formulated as the Adequacy
Theorem 3.30) was first established by Emerson & Jutla [11].

Exercises

Exercise 3.1 Prove Proposition 3.6: show that monotone maps on complete lattices are
inductive.

Exercise 3.2 Prove Theorem 3.21.
(Hint: given complete lattices C and D, and a monotone map f : C' x D — C, show that the
map g : D — C given by

9(d) i= pa.f(z, d)
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is monotone. Here px.f(z,d) is the least fixpoint of the map fy : C — C given by fy(c) =
fle.d).)

Exercise 3.3 Let F' : p(S) — @(S) be some monotone map. A collection D € pp(S)
of subsets of S is directed if for every two sets Dy, D1 € D, there is a set D € D with
D; C D for i = 0,1. Call F (Scott) continuous if it preserves directed unions, that is, if
F(UD) =Upep F(D) for every directed D.

Prove the following;:

(a) F' is Scott continuous iff for all X C S: F(X) = {F(Y)|Y C, X}.
(Here Y C,, X means that Y is a finite subset of X.)

(b) If F is Scott continuous then the unfolding ordinal of F' is at most w.

(c) Give an example of a Kripke frame S = (S, R) such that the operation [R] is not
continuous.

(d) Give an example of a Kripke frame S = (S, R) such that the operation [R] has clos-
ing /unfolding ordinal w + 1.

Exercise 3.4 By a mutual induction we define, for every finite set P of propositional vari-
ables, the fragment uMLg by the following grammar:

pu=plYleVveleAe|Op| gy,
where p € P, 1) € uML is a P-free formula, and ¢’ € uMLSU {a}"

Prove that for every Kripke model S, every formula ¢ € ,uMLg, and every proposition
letter p € P, the map goﬁ tp(S) — p(5) is continuous.

Exercise 3.5 Let F' : p(S) — ¢(S) be a monotone operation, and let vz be its unfolding
ordinal. Sharpen Corollary 3.7 by proving that the cardinality of v is bounded by |S| (rather

than by [p(S)]).

Exercise 3.6 The proof of Theorem 3.14 is based on the characterisation of least fixed points
as the intersection of all prefixpoints, and similarly, of greatest fixpoints as the union of all
postfixpoints. Can you also prove the theorem using the characterisation of least- and greatest
fixpoints via ordinal approximations?

Exercise 3.7 Prove that the unfolding game of Definition 3.12 satisfies positional deter-
minacy. That is, let U*(F) be the least fixpoint unfolding game for some monotone map
F : o(S) = p(5). Prove the existence of two positional strategies f3 : S — @(S5) and
fv : p(S) — S such that for every position p of the game, either f3 is a winning strategy for
Jin UM (F)@Qp, or else fy is a winning strategy for V in U*(F)Qp.

Exercise 3.8 Let C be a complete boolean algebra and let f : C — C be a monotone map.
Pick an element d € C and let px.f(x) be the least fixpoint of f.
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Show that d A pz.f(x) = L iff d A pz.f(x A —=d) = L, where pz.f(x A —d) denotes the
smallest fixpoint of the map sending any element z € C to f(x A —d).

Conclude that, for any formula of the form px.p and an arbitrary formula +: the formula
v A px.g is satisfiable iff the formula v A px.p[z A =y /x] is satisfiable. (A formula ¢ is
called satisfiable if there exists a pointed Kripke model such that S, s I ¢.)

» add exercise on the closure ordinal of a formula

» add exercise on (complete) additivity



5 Parity games

A large part of the theory of modal fixpoint logic involves nontrivial concepts and results
from the theory of infinite games. In this chapter we discuss some of the highlights of this
theory in a fair amount of detail. This allows us to be rather informal about game-theoretic
concepts in the rest of the notes.

5.1 Board games

The games that we are dealing with here can be classified as board or graph games. They are
played by two agents, here to be called 0 and 1.

Definition 5.1 If o € {0,1} is a player, then & denotes the opponent 1 — o of o. <

A board game is played on a board or arena, which is nothing but a directed graph in
which each node is marked with either 0 or 1. A match or play of the game consists of the
two players moving a pebble or token across the board, following the edges of the graph. To
regulate this, the collection of graph nodes, usually referred to as positions of the game, is
partitioned into two sets, one for each player. Thus with each position we may associate a
unique player whose turn it is to move when the token lies on position p.

Definition 5.2 A board or arena is a structure B = (By, B1, E), such that By and B
are disjoint sets, and E C B2, where B := By U B;. We will make use of the notation
E[p] for the set of admissible or legitimate moves from a board position p € B, that is,
Elp] :={q € B| (p,q) € E}. Positions not in E[p] will sometimes be referred to as illegitimate
moves with respect to p. A position p € B is a dead end if E[p] = @. If p € B, we let oy,
denote the (unique) player such that p € By, and say that p belongs to o, or that it is o’s
turn to move at p. <

Remark 5.3 Occasionally it will be convenient to represent a board in an alternative yet
equivalent manner, viz., as a triple B = (B, E, o) such that (B, F) is a graph and ¢ : B —
{0,1} is a map assigning a player to each position in B. It is obvious how to switch from one
presentation to another. <

A match of the game may in fact be identified with the sequence of positions visited during
play, and thus corresponds to a path through the graph. We refer to the Appendix A for some
notation concerning paths.

Definition 5.4 A path through a board B = (By, By, E) is a nonempty (finite or infinite)
sequence m € B such that Em;m;11 whenever applicable. A full or complete match or play
through B is either an infinite B-path, or a finite B-path 7 ending with a dead end (i.e.
Ellast(m)] = 9).

A partial match is a finite path through B that is not a full match; in other words, the last
position of a partial match is not a dead end. We let PM,, denote the set of partial matches
such that o is the player whose turn it is to move at the last position of the match. In the
sequel, we will denote this player as or; that is, or 1= 0444 (r)- <
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Each full or completed match is won by one of the players, and lost by their opponent;
that is, there are no draws. A finite match ends if one of the players gets stuck, that is, is
forced to move the token from a position without successors. Such a finite, completed, match
is lost by the player who got stuck.

The importance of this explains the definition of the notion of a subboard. Note that any
set of positions on a board naturally induces a board of its own, based on the restricted edge
relation. We will only call this structure a subboard, however, if there is no disagreement
between the two boards when it comes to players being stuck or not.

Definition 5.5 Given a board B = (By, B, E), a subset A C B determines the following
board B4 := (AN By, AN By, E4), where Ejy := EN (A x A) is the restriction of E to A.
This structure is called a subboard of B if for all p € A it holds that Ep] = @ iff Ej4zp] = @.
<

If neither player ever gets stuck, an infinite match arises. The flavor of a board game is
very much determined by the winning conditions of these infinite matches.

Definition 5.6 Given a board B, a winning condition is a map W : B* — {0,1}. An
infinite match 7 is won by W (w). A board game is a structure G = (By, By, E, W) such that
(Bo, B1, E) is a board, and W is a winning condition on B. <

Although the winning condition given above applies to all infinite B-sequences, it will
only make sense when applied to matches. We have chosen the above definition because it is
usually much easier to formulate maps that are defined on all sequences.

Before players can actually start playing a game, they need a starting position. The
following definition introduces some terminology and notation.

Definition 5.7 An initialized board game is a pair consisting of a board game G and a
position g on the board of the game; such a pair is usually denoted GQygq.

Given a (partial) match 7, its first element first(m) is called the starting position of the
match. We let PM,(¢) denote the set of partial matches for o that start at position q. <

Central in the theory of games is the notion of a strategy. Roughly, a strategy for a player
is a method that the player uses to decide how to continue partial matches when it is their
turn to move. More precisely, a strategy is a function mapping partial plays for the player to
new positions. It is a matter of definition whether one requires a strategy to always assign
moves that are legitimate, or not; here we will not make this requirement.

Definition 5.8 Given a board game G = (By, By, E, W) and a player o, a o-strategy, or a
strategy for o, is a map f : PM, — B. In case we are dealing with an initialized game GQq,
then we may take a strategy to be a map f: PM,(q) — B. A match 7 is consistent with or
guided by a o-strategy f if for any partial match 7’ C 7 with last(n") € B,, the next position
on 7 (after 7') is indeed the element f(7').

A o-strategy f is surviving in GQgq if the moves that it prescribes to f-guided partial
matches in PM,@Qq are always admissible to o, and winning for o in GQq if in addition all
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f-guided full matches starting at ¢ are won by o. A position ¢ € B is winning for o if o has a
winning strategy for the game GQgq; the collection of all winning positions for ¢ in G is called
the winning region for o in G, and denoted as Win,(G). <

Intuitively, f being a surviving strategy in G@Qq means that o never gets stuck in an
f-guided match of GQgq, and so guarantees that ¢ can stay in the game forever.

Convention 5.9 Observe that we allow strategies that prescribe illegitimate moves. In prac-
tice, it will often be convenient to extend the definition of a strategy even further to include
maps f that are partial in the sense that they are only defined on a proper subset of PM,.
We will only permit ourselves such a sloppiness if we can guarantee that f(7) is defined for
every m € PM,, that is consistent with the partial o-strategy f, so that the situation where
the partial strategy actually would fail to suggest a move, will never occur.

It is easy to see that a position in a game G cannot be winning for both players. On the
other hand, the question whether a position p is always a winning position for one of the
players, is a rather subtle one. Observe that in such games the two winning regions partition
the game board.

Definition 5.10 The game G on the board B is determined if Wing(G) U Win;(G) = B; that
is, each position is winning for one of the players. g

It turns out that the axiom of choice implies the existence of infinite games that admit
positions from which neither player has a winning strategy.

» Add some more detail, including a remark on the axiom of determinacy in set theory.

In principle, when deciding how to move in a match of a board game, players may use
information about the entire history of the match played thus far. However, it will turn out
to be advantageous to work with strategies that are simple to compute. Particularly nice
are so-called positional strategies, which only depend on the current position (i.e., the final
position of the partial play). Although their importance is sometimes overrated, positional
strategies are convenient to work with, and they will be critically needed in the proofs of some
of the most fundamental results in the automata-theoretic approach to fixpoint logic.

Definition 5.11 A strategy f is positional or history-free if f(mw) = f(x') for any m, 7’ with
last(m) = last(n'). <

Convention 5.12 A positional o-strategy may be represented as a map f : B, — B.

As a slight generalisation of positional strategies, finite-memory strategies can be com-
puted using only a finite amount of information about the history of the match. More details
can be found in Exercise 5.2.
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5.2 Winning conditions

In case we are dealing with a finite board B, then we may nicely formulate winning conditions
in terms of the set of positions that occur infinitely often in a given match. But in the case of
an infinite board, there may be matches in which no position occurs infinitely often (or more
than once, for that matter). Nevertheless, we may still define winning conditions in terms of
objects that occur infinitely often, if we make use of finite colorings of the board. If we assign
to each position b € B a color, taken from a finite set C' of colors, then we may formulate
winning conditions in terms of the colors that occur infinitely often in the match.

Definition 5.13 A coloring of B is a function I' : B — C' assigning to each position p € B
a color T'(p) taken from some finite set C' of colors. By putting I'(pop1 - -+ ) := I'(po)T'(p1) - -
we can naturally extend such a coloring I' : B — C to amap I' : BY — C¥. <

Now if I' : B — C is a coloring, for any infinite sequence m € B%, the map ['ow € C* forms
the associated sequence of colors. But then since C' is finite there must be some elements of
C that occur infinitely often in this stream.

Definition 5.14 Let B be a board and I' : B — C' a coloring of B. Given an infinite sequence
m € B¥, we let Infr(m) denote the set of colors that occur infinitely often in the sequence
T'om.

A Muller condition is a collection M C p(C) of subsets of C. The corresponding winning
condition is defined as the following map Wy : B¥ — {0,1}:

1 otherwise.

W () 32{

A Muller game is a board game of which the winning conditions are specified by a Muller
condition. 4

In words, player 0 wins an infinite match m = pgpy --- if the set of colors one meets
infinitely often on this path, belongs to the Muller collection M.

» Examples to be supplied.

Muller games have two nice properties. First, they are determined. This follows from a
well-known general game-theoretic result, but can also be proved directly. In addition, we
may assume that the winning strategies of each player in a Muller game are finite-memory
strategies. These results can in fact be generalised to arbitrary reqular games, that is, board
games where the winning condition is given as an w-regular language over some colouring of
the board. We refer to Exercise 5.2) for more details.

These results becomes even nicer if the Muller condition allows a formulation in terms of
a priority map. In this case, as colors we take natural numbers. Note that by definition of
a coloring, the range Q[B] of the coloring function {2 is finite. This means that every subset
of Q[B] has a maximal element. Hence, every match determines a unique natural number,
namely, the ‘maximal color’ that one meets infinitely often during the match. Now a parity
winning condition states that the winner of an infinite match is 0 if this number is even, and
1 if it is odd. More succinctly, we formulate the following definition.
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Definition 5.15 Let B be some set; a priority map on B is a coloring 2 : B — w, that
is, a map of finite range. A parity game is a board game G = (By, B1, E, W) in which the
winning condition is given by

Wa(m) := max(Infq(m)) mod 2.
Such a parity game is usually denoted as G = (By, By, E, Q). <

The key property that makes parity games so interesting is that they enjoy positional
determinacy. We will prove this in section 5.4, but first we turn to a special case, viz., the
reachability games.

Before closing this section, however, for future reference we define an important generali-
sation of parity games: the w-regular ones.

Definition 5.16 An infinite game G = (By, By, E, W) is called w-regular if there exists an
w-regular language L over some finite alphabet C' and a colouring I' : B — (', such that
player 0 wins a match m = (p;)i<, € B® precisely if the induced sequence (I'(p;))i<w € C¥
belongs to L. <

Further on we will see that w-regular games are closely related to parity games.

5.3 Reachability Games

Reachability games are a special kind of board games. They are played on a board such as
described in section 5.1, but now we also choose a subset A C B. The aim of the game is for
the one player to move the pebble into A and for the other to avoid this to happen.

Definition 5.17 Fix a board B and a subset A C B. The reachability game R, (B, A) is
then defined as the game over B in which ¢ wins as soon as a position in A is reached or if
7 gets stuck. On the other hand, @ wins if he can manage to keep the token outside of A
infinitely long, or if o gets stuck. <

As an example, if A = @, in order to win the game R, (B, A) for player 7 it simply suffices
to stay alive forever, while ¢ can only win by forcing & to get stuck.

Remark 5.18 If we want reachability games to fit the format of a board game exactly, we
have to modify the board, as follows. Given a reachability game R, (B, A), define the board
B’ := (B{, B}, E') by putting:

B = B,\A
B?? = BEUA
E' = {(pg e E|lp¢gA}

In other words, B’ is like B except that player & gets stuck in a position belonging to A.
Furthermore, the winning conditions of such a game are very simple: simply define W :
B¥ — {0,1} as the constant function mapping all infinite matches to @. This can easily be
formulated as a parity condition. <



5-6 Parity games

Since reachability games can thus be formulated as very simple parity games, the follow-
ing theorem, stating that reachability games enjoy positional determinacy, can be seen as a
warming up exercise for the general case. We leave the proof of this result as an exercise for
the reader.

Theorem 5.19 (Positional determinacy of reachability games) Let R be a reachabil-
ity game. Then there are positional strategies fo and fi1 for 0 and 1, respectively, such that
for every position q there is a player o such that f, is a winning strateqy for o in RQq.

Definition 5.20 The winning region for o in R, (B, A) is called the attractor set of o for
A in B, notation: Attr2(A). In the sequel we will fix a positional winning strategy for o in
Ro(B, A) and denote it as attrZ(A). <

Note that o-attractor sets always contain all points from which ¢ can make sure that &
gets stuck. Furthermore, it is easy to see that in attr,(A)-guided matches the pebble never
leaves Attr,(A) (at least if the match starts inside Attr,(A)!).

Proposition 5.21 Attr, is a closure operation on P(B), i.e.
1. A C A implies Attr,(A) C Attr,(A'),
2. AC Attrs(A),
3. Attr,(Attr,(A)) = Attrs(A).

A kind of counterpart to attractor sets are traps. In words, a set A is a o-trap if o can’t
get the pebble out of A, while her opponent has the power to keep it inside A.

Definition 5.22 Given a board B, we call a subset A C B a o-trap if E[b] C A for all
be AN B,, while E[)] N A# o for all b€ AN By. 4

Note that a o-trap does not contain g-endpoints and that & will therefore never get stuck
in a o-trap. We conclude this section with a useful proposition.

Proposition 5.23 Let B be a board and A C B an arbitrary subset of B. Then the following
assertions hold.

1. If A is a o-trap then A is a subboard of B.
The union |J{A; | i € I} of an arbitrary collection of o-traps is again a o-trap.
If A is a o-trap then so is Attrz(A).

The complement of Attr,(A) is a o-trap.

DA R

If A is a o-trap in B then any C C A is a o-trap in B iff C' is a o-trap in B,4.

Proof. All statements are easily verified and thus the proof is left to the reader. QED
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5.4 Positional Determinacy of Parity Games

Theorem 5.24 (Positional Determinacy of Parity Games) For any parity game G there
are positional strategies fo and f1 for 0 and 1, respectively, such that for every position q there
s a player o such that f, is a winning strategy for o in GQq.

5.4.1 The finite case

» Details to be supplied

5.4.2 The general case

To prove positional determinacy for arbitrary parity games, we start with the definition of
players’ paradises. In words, a subset A C B is a o-paradise if o has a positional strategy f
which guarantees her both that she wins the game, and that the token stays in A.

Definition 5.25 Given a parity game G(B, ), we call a g-trap A a o-paradise if there exists
a positional winning strategy f: AN B, — A. <

The following proposition establishes some basic facts about paradises.

Proposition 5.26 Let G(B, Q) be a parity game. Then the following assertions hold:
1. The union |J{P; | i € I} of an arbitrary set of o-paradises is again a o-paradise.
2. There exists a largest o-paradise.

3. If P is a o-paradise then so is Attr,(P).

Proof. The main point of the proof of part (1) is that we somehow have to uniformly choose
a strategy on the intersection of paradises, such that we will end up following the strategy of
only one paradise. For this purpose, we assume that we have a well-ordering on the index set
I (i.e., for the general case we assume the Axiom of Choice).

For the details, assume that {P; | i € I} is a family of paradises, and let f; be the positional
winning strategy for P;. Note that P := |J{P; | i € I} is a trap for @ by Proposition 5.23.
Assume that < is a well-ordering of I, so that for each ¢ € P there is a minimal index min(q)
such that ¢ € P, Define a positional strategy on P by putting

f(Q) = fmin(q) (q)

This strategy ensures at all times that the pebble either stays in the current paradise, or
else it moves to a paradise of lower index, and so, any match where ¢ plays according to f will
proceed through a sequence of o-paradises of decreasing index. Because of the well-ordering,
this decreasing sequence of paradises cannot be strictly decreasing, and thus we know that
after finitely many steps the pebble will remain in the paradise where it is, say, P;. From
that moment on, the match is continued as an f;-guided match inside P;, and since f; is by
assumption a winning strategy when played inside P;, this match is won by o.

in(q)-
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Part (2) of the proposition should now be obvious: clearly the union of all o-paradises is
the greatest o-paradise.

In order to prove part (3) we need to show that there exists a winning strategy for o.
The principal idea is to first move to P by attr,(P) and once there to follow the winning
strategy in P. Let f’ be the winning strategy for P, we then define the following strategy f
on Attr,(P) by

f'(p) ifpep

1p) = { attr (P)( '

o(P)(p) otherwise.

A match consistent with this strategy will stay in Attr,(P) because it is a o-trap and f(p) €
Attry(P) for all p € Attr,(P). It is winning because if ever the match arrives at a point
p € P then play continues as if the match were completely in P; and since f’ was supposed
to be a winning strategy for ¢ this play is won by o. However if we start outside P we will
at first follow the strategy attr,(P) which will ensure that o either wins or that the pebble
ends up in P, in which case ¢ will also win. QED

We are ready to prove the main assertion from which Theorem 5.24 immediately follows.

Proposition 5.27 The board of a parity game G(B,Q) can be partitioned into a 0-paradise
and a 1-paradise.

Proof. We will prove this proposition by induction on d, the maximal parity in the game (i.e.
n = max(Q[B])). If d = 0 we are dealing with a reachability game (namely R (B, @)), and
from the results in section 5.3 we may derive that Attr; (@) is a 1-paradise and its complement
is a 0-paradise. So the proposition holds in case d = 0.

Therefore in the remainder we can assume that d > 1. Let ¢ := d mod 2, that is, o wins
an infinite play m if max(Inf (7)) = max(2[B]) = d. Let Py be the maximal 7-paradise, with
associated positional strategy f. It now suffices to show that X := B\ Ps is a o-paradise.

First we shall show that X is a o-trap. By proposition 5.26(3) it follows that Attrz(Ps) is
itself also a @-paradise. By maximality of Py and the fact that Attrz is a closure operation,
it follows that Pr = Attrz(Ps). Thus by Proposition 5.23(4) we see that X, being the
complement of a G-attractor set is a o-trap.

Consider G, the subgame? of G restricted to X. Define N := {b € X | Q(b) = d} to be the
set of all points in X with priority d and let Z := X \ AttrEX (N). Since Z is the complement
of a o-attractor set in By it is a o-trap in Bx and hence a o-trap of B.

By the induction hypothesis we can split the subgame Gz into a O-paradise Zy and a
1-paradise Z1, see the picture. The winning strategies in these paradises we call fy and f;
respectively. (All notions are with regard to the game Gz.) We want to show that Zz = &,
so that Z = Z,.

To this aim, we claim that Py U Zz is a o-paradise in G, and in order to prove this, we
consider the following strategy g of &:

[ f(b) itheps
9() '_{ () ifbe Z.

4For the time being, we take a simple perspective on subgames. Given a parity game G = (Bo, B1, E,Q),
every subset A C B induces a subgame G4 := (BoNA,Bi1NA,E|a,Ql4) where Fl4 and Q[4) are simply
the restrictions of E and €2 to A.
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Figure 3: The proof of Proposition 5.27 in a picture

It is left as an exercise for the reader to show that this is indeed a positional winning strategy
for 7 in G, and in addition it keeps the pebble inside Py U Zz. By the definition of P5 as the
maximal o-paradise, we see that P = P5U Z7 and since P5 and Zz are disjoint we conclude
that Zz is empty indeed.
This means we can write
X = Z, U AttrEx(N).

We are now almost ready to define the winning strategy for ¢ which keeps the token inside
X. Recall that X is a o-trap, so that for each b € X N B,, we may pick an arbitrary element
k(b) € E[b] N X. Now define the following strategy h in G for o on X.

k(b) ifbe N
h(b) :={ attry(N)(b) if b€ AttrEx(N)\ N
fo(b) ifbe Z, = Z.

It is left as an exercise for the reader to show that h is indeed a winning strategy for ¢ in G
and that it keeps the pebble in X. QED

Finally, the assertion made in Theorem 5.24 follows directly from this proposition because
by definition of paradises there now exists for every point b € B a positional winning strategy
for the game G(B, Q).

> strategies as l-player games

» shadow matches?

5.5 Algorithmic aspects
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5.6 Game equivalences and game comparisons

In this section we explore some notions of equivalence for board games. In this setting we
will frequently represent a board as a triple B = (B, E,0), where 0 : B — {0,1} is a map
assigning a player to each position in B.

5.6.1 Covers

A very tight link between two games arises if one is a cover of the other. Intuitively, G is a
cover of G’ if it is some kind of finitary unravelling of G'.

Definition 5.28 Let B = (B, E,0) and B’ = (B’, E',¢’) be two boards. Then we call a
function f : B — B’ a cover map for B and B’ if f is surjective and satisfies the following
conditions:

1) f restricts to a bijection between the sets E[b] and E’[fb], for every b € B;

2) f respects ownership: o’/(fb) = o(b), for every b € B.
For two board games G = (B, E,0,W) and G’ = (B, E', o/, W'}, we call a function f : B — B’
a cover map if f is a cover map for the underlying boards, and in addition satisfies the
condition

3) f respects winners: W(mw) = W(rw o f), for every G-match 7. Here we write mo f =
(fbn)n<w for a G-match ™ = (fb,)n<w-

If f is a cover map from G to G’, we write f : G — G’, say that G covers G through f, and
we call G a cover of G'. N

We gather some basic facts on these concepts, starting with the following observation on
boards.

Proposition 5.29 Let B = (B, E,c) and B' = (B', E', ¢’} be two boards, and let f : B — B’
be a cover map. Then for any path @' in B’ there is a unique path w in B such that 7’ = wo f.

» Turning to games, we may bring the unravelling of a game into the picture.

» Define the unravelling of a game and show that every game is covered by its unravelling.

» There are in fact good reasons to identify a game with any of its covers, since
one may show that if f:G — G’, then G and G’ have isomorphic unravellings.

Proposition 5.30 Let f : G — G’ be a cover map. Then for each player o € {0,1} we have
Win, (G') = f~1Win;(G)].

An important example of a cover map is given by the following proposition, which states
that every w-regular game is covered by a parity game. The reader is asked to supply the
proof of this Proposition in Exercise 5.2.

Proposition 5.31 (Cover Lemma) Let G = (B, E,0,W) be an w-reqular game. Then G
s covered by a parity game which is based on the set B x M, where M is the set of states of
any deterministic parity automaton recognizing the w-reqular language used to define W.
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Proof. See Exercise 5.2. QED

The following observation is an immediate corollary of the Cover Lemma and Proposi-
tion 5.30

Corollary 5.32 Let G be an w-reqular game. Then G is determined.
For future reference, we need a strengthened version of the Cover Lemma.

Proposition 5.33 (Strengthened Cover Lemma) Let G = (B, E,0,W) be an w-regular
game, and let D C 'V be a set of positions such that every cycle contains at least one position
in D, and E[D]ND = &. Then G is covered by a parity game G' = (B', E', o', Q') through a
cover map f such that

1) D ‘induces states’: Dom(Q') C f~1[D];

2) E' is “injective on f~[D]’: if f(u}) € D and (u,v') € E' fori=0,1, then uy = uj.

Proof. By the standard cover lemma we may without loss of generality assume that G’ is
itself already a parity game, say, with priority map Q'. We will take care of the conditions 1)
and 2) one by one.

For condition 1), define G’ := (V' E', o', )} as follows. First we turn 2 into a total map
O* by defining Q*(u) := Q(u) if Q(u) is defined, and Q*(u) := —1 otherwise.

Vv’ = V x (Ran(Q) U {-1})

y v,max(k,Q*(v))) |v € E[u]} ifueD
E'|(u, k)] { }((v, Q*(v)) |v e E)[u]} } otherwise
o(u,k) = o(u)

Q(u, k) _ {k: ifueDand k>0
’ undefined otherwise

Roughly, the intuitions underlying this construction are as follows: a position (u, k) rep-
resents a path 7 in G with last(m) = u, first(m) is the only position on 7 that belongs to D,
and k is a counter that records the highest priority encountered on 7 (after first(w)). The
value k is reset at a position u € D; that is, if (v,m) € E(u, k) and u € D then the value of
m is no longer dependent on any value encountered on the path before v, but simply defined
as the priority of v.

» Further details to be supplied.

Now to prove the Proposition it suffices to show that given a parity game G = (B, E,0,Q)

and a subset D of B such that Dom(€2) C D, we can find a parity game G’ = (B, E’, o', Q)

covering G through a map f satisfying condition 2) above (i.e., injectivity of E on f~1[D]).
For condition 2) (state injectivity) we first define the map r : V! — D W {x} by putting

T(u)::{ u ifueD

* otherwise.
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Now we define

|4 = (V\D)xV)U(D x {x})
E'(u,x)] = Elu] x {r(u)}.
o(u,z) = o(u)

Q(uw) if u € Dom(2)
undefined otherwise

V(u,z) = {

Here the intuition underlying the definition of E'[(u,v)] is the following. If (v,y) € E'[(u, )]
then we always have v € Eful; in addition we ‘remember’ u (in the sense that y = u) if u € D,
while we ‘forget’ u (in the sense that y = %) if u & D.

To see that E’ is state injective, suppose that we have (w,x) € E'[(ug,vo)] N E'[(u1,v1)]
for ug,u1 € D. Then we find vg = v1 = *, while x = up = uy, implying that (ug, v9) = (u1,v1)
indeed.

» Further details to be supplied.

QED

5.6.2 Game bisimulations
Notes

The application of game-theoretic methods in the area of logic and automata theory goes back
to work of Biichi. The positional determinacy of parity games was proved independently by
Emerson & Jutla [11] and by Mostowski in an unpublished technical report. Our proof of
this result is based on Zielonka [29].

Exercises

Exercise 5.1 (positional determinacy of reachability games) Give a direct proof of
the positional determinacy of reachability games, that is: prove Theorem 5.19.

Exercise 5.2 (regular games & finite memory strategies) A strategy « for player o in
an infinite game G = (By, By, E, W) is a finite memory strategy if there exists a finite set M,
called the memory set, an element m; € M and a map (a1, a9) : B x M — B x M such that
for all pairs of sequences pg---pr € B* and mqg---mp € M*: if mg = my, po---pr € PM,
and mit1 = aa(pi, m;) (for all ¢ < k), then a(po - - - pr) = a1 (pr, mx)-

Now let G be a regular game.

(a) Define an parity game which covers G, with positions B x M, where M is the carrier of
a deterministic parity automaton M recognizing L.

(b) Show that each player 7 has a finite memory strategy which is winning for them in GQp
for every p € Win;.

Exercise 5.3 (extended cover lemma) Supply the missing details in the proof of the
Strengthed Cover Lemma, Proposition 5.33.
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7.1 The Tableau Game
Introduction

In this section we introduce the tableau game: a two-player board game that we will use to
investigate whether a given formula (or finite set of formulas), is satisfiable or not. The game
will be designed in such a way that a winning strategy for one of the players (Builder, that
is) provides a way to construct a model for the formula at stake, while a winning strategy
for her opponent (Refuter) can be seen as a refutation, that is: a formal proof or derivation
showing that the formula is not satisfiable, or equivalently, that its negation is valid.

The tableau game will be closely connected with the evaluation game, in that one match
of the tableau game corresponds to a bundle of matches of the evaluation game. We will be
working with the version of the evaluation game that is based on the closure of a tidy formula;
as a consequence, just as in the closure game, in the tableau game as well a prominent role
will be reserved for infinite traces (cf. Definition refd:trace).

» More about this chapter

7.1.1 The tableau game

As mentioned the tableau game is about the satisfiability of finite sets of formulas, that we
shall call sequents.

Definition 7.1 A sequent is simply a finite set of tidy formulas. We define the following
operation on sequents:

02 = {Qp|lpek}

Oy = {p|QVpex}

for every modal operator Q. <

Convention 7.2 As is common in proof theory, we will often denote the union operation
on sequents simply by a comma instead of using the set-theoretic symbol U, and we will not
write the parentheses in case of a singleton set. For instance, we let X, ¢ denote the sequent

S U{p}.

The tableau game T is a board game with two players: B, or Builder (female) and R, or
Refuter (male). A position of this game is either a sequent or a pair consisting of a sequent
Y and a formula ¢. Such a pair will be written as (X, ¢) to distinguish it from the set 3, .
For the intuition underlying this game: it is Builder’s goal to show that the sequent, which
provides the initial position of the game, is satisfiable in some pointed Kripke model, while
Refuter intends to prove this claim wrong.

The game proceeds in rounds, of two moves each. Both the start and the end of a
round consist of some basic position, that is, some sequent ¥ C CI(®) (where ® is the initial
position). At a basic position X, Refuter is required to pick some formula ¢ € ¥; depending
on the shape of ¢, some rule will be applied to the sequent; the result of which will be a



7-2 Tableau games and derivation systems

new sequent that provides the next basic position. For instance, if Refuter picks a fixpoint
formula then this formula is simply unfolded; if he picks a disjunction then it is up to Builder
to pick a disjunct, etc.

The details of the rules and their effects are specified in Table 10, and discussed in Re-
mark 7.7. As usual, we say that a player gets stuck if there is no legitimate move available to
them; in this case the game is over and the player who got stuck loses the match. For instance,
if ® is empty then Refuter will immediately get stuck; this corresponds to our agreement that
A\ @ = T: the conjunction of the empty set of formulas is equivalent to the constant T,
and hence certainly satisfiable. If none of the players gets stuck the resulting match will be
infinite, and we need to check how the winning conditions determine a winner of the match.

Position Player | Admissible moves

b R {{I'g) | PU{p} =X}
(I, 1) B %)

(L, T) - | {I}
T,0),with¢el | B |o

(T,¢), with £ ¢ T R %)

(T, 00 A 1) — | {TU {0, p1}}

(T, 00 V 1) B | {T'U{po}, T U{pi}}
(T, nz 1) - | {Tu{vhzy/a]}t}
(T, Oat)) - | H{vruog'ty

(T, Ogv) R %)

Table 10: Tableau game

Intuitively, in a game 7T@Q®, a winning strategy for Builder should correspond to a model
for ®, whereas a winning strategy for Refuter, which we will refer to as a refutation, constitutes
a formal proof for the unsatisfiability of ®, and hence, of the validity of the formula \/ @,
where ® := {¢ | ¢ € ®}. In correspondence with this, one may see Table 10 as providing
the proof rules of some derivation system, with the understanding that it is refuter who
determines the order in which these rules are applied.

» Somewhere: define 7 (®P) as opposed to TQD:
in 7(®) we restrict to the positions that are reachable from .

Definition 7.3 The tableau game, denoted as T, is a board game, with players B (or Builder,
female) and R (or Refuter, male). Its positions are given by the set

P (ML) U {(T, @) | T € g, (ML), € pML'},

where we recall that uML! denotes the set of tidy u-calculus formulas. Positions of the form
¥ € pu(Cl(uMLY) will be called basic. The board of the game is given in Table 10, and its
winning conditions are given in Definition 7.19 below. <

Note that 7 is a global game, so to say, in the sense that its board consists of the set of
all sequents of tidy formulas, and all sequent/formula pairs of tidy formulas. Nevertheless,
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our attention will almost exclusively be directed towards initialized games of the form 7TQ®,
for some sequent ®. It is not hard to see that every position that is reachable in 7 from &
will consist of formulas from CI(®) only.

Before we define the winning conditions we introduce some terminology, and we comment
on the dynamics of the game; in particular we discuss the rules that we may associate with
each position of the form (T, ¢).

Definition 7.4 Consider a position in 7 of the form (T, ). We will refer to ¢ as the principal
formula of this position, and to I' as its context; formulas in I' will be called side formulas.
We will also call ¢ an active formula of the position (I', ). In case ¢ is of the form <410, all
formulas of the form Ogy are called active as well. In all other cases the principal formula ¢
is the only active formula. <

Note that at a basic position 3, Refuter not only picks a formula ¢ € ¥, he also picks a
context I', and he can either choose I' = X (so p € I') or I' = ¥\ {¢} (so ¢ € I'). We need
some terminology here.

Definition 7.5 Let ¥ be some position in 7, and suppose that Refuter picks, as the next
position, the pair (I, ¢). In case I' = ¥ we call his move cumulative; if, on the other hand
' = ¥\ {¢}, we call it reductive. In case Refuter always plays reductively, we say that he
follows a reductive strategy. <

Convention 7.6 For the time being we will always want to restrict Refuter to play reduc-
tively. This means that the admissible moves of Refuter at a sequent position 3 are of the
form (T, ) with I' :== 3\ {¢}.

Remark 7.7 In this remark we discuss the various positions of the form (I", ), their owners,
and the moves available to these owners.

Case ¢ = 1. In this case the sequent I', ¢ is surely not satisfiable. Accordingly, positions
of type (I', L) belong to Builder, but since there are no legitimate moves, she will get
stuck immediately.

Case @ = T. In this case the formula ¢ has no effect on the satisfiability of the sequent, and
so it can be removed. Note that if I' = &, Refuter will get stuck at the next position;
this is appropriate, since the singleton {T} is satisfiable.

Case o = £. Note that this covers both the cases where ¢ = p and where ¢ = p, for some
proposition letter p; in the first case we have £ = p and in the second case, £ = p.

Either way we make a further case distinction: if the negation ¢ of the literal belongs
to I', the sequent I', ¢ is surely not satisfiable; this position can thus be treated in a
similar way as the one where ¢ = L. On the other hand, if ¢ does not belong to T,
then there is no way of telling whether I', £ is satisfiable or not, at least not without
further analysis of I'. Refuter has picked the formula ¢ to soon, as it were, and in order
to discourage him from doing so, we designed the game in such a way that he gets stuck
in this situation.
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Case p = pgAp1. Note that the sequent I', pg Ay is satisfiable iff I, ¢q, (1 is satisfiable; hence
if Refuter has picked a conjunction it will immediately be replaced by its conjuncts.

Case v = po V 1. In this case we find that I", g V ¢ is satisfiable iff at least one of I, ¢ or
I', 1 is satisfiable, and since Builder is the player who aims for showing satisfiability, it
is up to her to pick one of these two sequents.

Case @ = nx1p. This case is simple: if a fixpoint formula is principal, then it will simply be
unfolded.

Case p = Ogtp. In this case the match moves to a ‘successor state’, so to speak, which serves
as a witness for the formula 1. However, at this successor state, then, not only 1, but
also every formula ¢ such that Ogp € I', must be true.

Case ¢ = Og1p. Picking a box formula constitutes a mistake for Refuter, since box formulas
only form a ‘real’ requirement in tandem with a diamond formula. To discourage Refuter
from picking a box formula, we make sure that at a position of the form (T',04%)) he
loses immediately.

Finally, note that Refuter may pick a diamond formula at any time, but that some choices
are better than others. In particular, if he picks a diamond formula too early, he may loose
the possibility of unravelling a least fixpoint formulas that is still ‘unpacked’ inside a boolean
side formula. On the other hand, there are situations in which he cannot wait indefinitely
with picking a diamond formula, for instance, if he ‘locally’ unfolds v-fixpoints only. <

Convention 7.8 In the sequel we will present strategies for Refuter in a proof-theoretic
format. That is, a strategy f will be given as a labelled tree, of which the nodes represent
the partial f-guided matches. Furthermore, every node t is labelled with the sequent 3,
representing the final position of the partial match represented by ¢. Furthermore, at any
node ¢t we will underline the formula picked by Refuter’s strategy. Assuming that Refuter
uses a reductive strategy, the node ¢ thus also reveals the resulting position. In other words,
the labelled tree completely determines Refuter’s strategy.

Turning to the winning conditions of the tableau game, first we consider the ways in which
one of the two players could win or lose a finite match.

To start with, observe that Refuter can force an (almost) immediate win at those sequents
that contain 1, or, for some proposition letter p, both p and p. On the other hand, as we
already mentioned, Refuter will get stuck at the empty sequent since there is no principal
formula to pick. Another possibility for Refuter to get stuck is at a sequent that consists of
atomic and box formulas only, if the propositional part does not contain L or a pair p,p. In
such a case Refuter may survive for one more round if the sequent contains the formula T,
but after that every principal formula he picks will result in an immediate loss.
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Example 7.9 Consider the ML-sequent OCp vV OL, SO(p V ¢), O0O4g.

.4,q
Vq),q
©p,0(pV q), 07 1,0(pVq),07

00p,00(pV q),007 0L, 00(pVq),007

s]

7p7

3l
= |

I

0Op Vv OL,¢0(pVq), 007

The labelled tree above represents a refutation for this sequent, that is, a winning strategy
for Refuter. <

It is not hard to see that, at least if Refuter plays reductively, all matches of the tableau
game for a sequent of basic modal formulas will be finite.

7.1.2 Trails and traces

In this subsection we discuss how to assign a winner to an infinite match of the tableau game.
It will be useful to have a generic notation for an arbitrary match of the tableau game.

Convention 7.10 First of all, note that every match of 7 is a path of positions that alternate
between sequents and sequent-formula pairs, Observe that the successor of a sequent position
of the form ¥ is always a sequent formula pair (I, x) such that ¥ = I" U {x}, that is, ¥
can always be retrieved from I' and x. Hence, to denote an infinite match of the form
m = 30(Co, x0)X1(I'1, x1)X2 - - - without loss of information we may write 7 = ((I's, Xn))n<w-
By a slight abuse of notation we will usually denote this match as m = (I'yy, Xn)n<w-

To determine the winner of an infinite match, we need to keep track of the so-called trails
of formulas. Basically, a trail is a record of the possible development of an individual formula
during a match, as determined by the proof rules.

Example 7.11 Consider the sequent

® = {()(pV ), [+p, [},

where (x)(pV q) = px (pV q) V Ox, [%]p = vyp A Oy, and [%]g = vzg A Oz. The labelled tree
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below represents a strategy for Refuter.

(77 )V O(<)(p v 0),BA DD 7 7 OFla
(pV @) Vo) (pVa)pADXp,[+]g
(V@) VOl (pVa),[+p, [+]g

p:p, O[«p,q,0[x]g  ¢,p,0[*]p, g, O[+lg V) [ [xlg (1)
pV q,p, O[|p,q, O[x]g O()(pV q),p,8[+]p,q, O[+]g
(pVaq)Vol)(pVaq),p,Op, g, O+]g
(pVa)VOl)(pVa),p [*]RQA Of+]g

(pVa)Vol(pV LﬁADMﬂGADMa
(pVaq)Vol)(pVa),pADp, g

(pV ) Vo) (pVa),lp, g
() (pVaq), [*Ip, [*]g

Note that this tree is infinite but regular in the sense that the subtree generated from the
node labelled (}) is isomorphic to the tree itself. In the tree we also display the (in this case
unique) trail on the infinite branch of the tree which starts at the formula (x)(p V q) at the
root node. <

Roughly speaking, we will declare that
an infinite match of the tableau game is winning for Refuter if it carries a p-trail.

Clearly then, we need to define this notion of a p-trail. The following example shows that
this definition is somewhat tricky.

Example 7.12 Consider the sequent

¢ = {pzz,vyy}.

First of all, note that since yrzx = 1 and vyy = T, the sequent ® is not satisfiable, and so
we want Refuter to have a winning strategy in the tableau game. Now consider the following
four strategies for Refuter:

KL T, VY'Y ) Yy Hr T, vyy

vyy
Pz, vyy vy vy p vy y
HEL,VYY YYY YYY HEL,VYY
[ 2, vy y Yy [ vy Y pi T, vy y
[ 2, vy Y VYY [ vy Y [, vyy
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The difference is that Refuter keeps unfolding px x in the leftmost strategy, he keeps unfolding
vy y in the second strategy, he unfolds px x twice and then keeps unfolding vy y in the third
strategy, and he alternates between unfolding the two fixpoint formulas in the rightmost
strategy. In this example, we shall call the two red sequences u-trails, since the p-formula is
unfolded infinitely often, whereas the green trails in the middle are not p-trails, since each of
them only features finitely many unfoldings of ux x. Hence the first and the fourth strategy
are winning for Refuter, the second and the third one are not. <

In order to formulate the winning conditions of the tableau game unambiguously, we
need a precise definition of the notion of a trail and of its associated trace. For this purpose,
consider one round of the tableau game, say, of the form X- (T, x)-¥’. With this configuration
we associate a direct trail relation Tr, between ¥ and ¥'; intuitively, we put a pair (¢, ) in
this relation if ¢ is the ‘residu’ of ¢ after the application of the rule associated with the pair
(T, x). This situation has two distinct manifestations: one in which ¢ is an active formula,
and one in which ¢ is a side formula. Roughly, the idea is that the active trail relation
contains pairs of the form (p,1)) where ¢ is active and v is a direct derivative of ¢, while
the passive trail relation gathers all pairs (¢, 1)) where ¢ is a side formula and v is equal to
. The trail relation is then simply defined as the union of the active and the passive trail
relation.

Example 7.13 To give two simple examples: if ¥ = {p A 1,4, x}, and Refuter picks the
conjunction ¢ A 1 as his principal formula, then the next sequent is ¥’ = {p, %, x}. Now the
active trail relation consists of the pairs (9 A, p) and (p A1), 1)) and the passive trail relation

of the pairs (¢, ) and (x, x).
If © = {Op, Oy, Cp, OE, p,nx x} and Refuter picks the formula G, then the next sequent

is © = {p,¥}. The active trail relation consists of the pairs (O, ), (Op, ) and (O, ),
and the passive trail relation is empty. <

Below we spell out the definition in detail; recall that the diagonal relation on a set A is
denoted by Id 4.

Definition 7.14 Let X, (', ¢) and X' be positions in the tableau game 7Q®, and assume
that (T, p) is a legitimate move at X, and likewise for X' at (T, ). We define two relations
Ar s, Pr,, € ¥ x ¥/, by means of the following case distinction:

Case ¢ = T. We define Ar , := @ and Pr, := Idr.
Case ¢ = o N @1. We define Ar, := {(vo A ¢1,%0), (o A p1,41)} and Pr, := Idr.

Case ¢ = o V 1. We define Ar, := {(po V ¢1,9i)} (depending on Builder’s choice) and
Pr,, = Idr.

Case ¢ = nx . We define Ar , := {(nxz 1, [nx/z])} and Pp, = Idr.
Case ¢ = Oq1p. We define Ar ,, := {(Cgt0,¥)} U {(Dax, x) | Oax € ¥} and Pr, := 2.

Finally, the general trail relation Tr , is simply defined as Tr , := Ap , U Pr . <
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Note that in the definition of the trail relation we do not need to consider the cases where
the formula ¢ is a literal, a box formula, or equal to the formula L, since in these cases the
position (I, ¢) does not have a successor.

Remark 7.15 If Refuter has made a reductive move, resulting in a position (I', ) such that
¢ ¢ I', then the relations Ar , and Pr , are disjoint.

Should we allow cumulative moves, however, then this need not longer be the case. Con-
sider for instance the sequent ¥ = {ux z,vyy}. If Refuter picks the formula pz z and cumu-
latively takes I' := X, then we find that the pair (ux z, ux x) belongs to both the active and
the passive trail relation. <

Definition 7.16 Let m = Xo((I'y,, (n), Xnt1)n<wx be some match of the tableau game. The
trail graph of 7 is defined as the pair (V, E) with

4 {p,n) |0<n<k, peX,}
E = {((g,n),(b,n+1)) | (p,%) € Tr, ¢ }-

We will often write p@n ~» 9p@n + 1 to denote that ((cp, n), (Y,n + 1)) € E. More generally,
we will write p@n ~~ 1)@m if there is a path through the trail graph from (¢, n) to (1, m).
A trail on 7 is any sequence T = (¢, )n<w such that the sequence (p,,n)n<, is a path
through the trail graph of 7. In case 7 is infinite, a trail 7 on 7 is called progressive if 7(n)
is active infinitely often, that is: 7(n) = (, for infinitely many n. <

To determine the winner of an infinite match, we are only interested in the active part of
its trails. For that purpose we define the notion of a condensation of a trail; this is the trace
we obtain from the trail by omitting the passive steps.

Definition 7.17 Let 7 = (¢pn)n<k be a trail on the match m = Xo((I'y, (n), Xnt1)n<x of the
tableau game 7@®. Then the condensation T is obtained from 7 by omitting all ;41 from
7 for which (@5, ¢;i11) belongs to the passive trail relation P, ,,,,. Any sequence of the form
7 for some trail on 7 is called a trace on . <

Example 7.18 The red trail in the refutation of Example 7.11 is of the form

fa¢7¢7¢7¢7£7%,£,w,¢1,...

where we abbreviate ¢ := (x)(pV ¢) and ¢ := (pV q) V (%) (p V ¢) (and we indicate whether
the formula is active by underlining it). Its condensation is the infinite trace

0,0, O, 0,19, 0, ...

In the four matches of Example 7.12 we get the following four trails of u-formulas (with active
formulas underlined), together with their condensations:

1. pxrz,pure, ur e, pex, fx T, . . . X Ty W Ty UT Ty 4T Ty 4T X, - - .
2. QT T, UT T, UT T, UT Ty YT X, . . . UT T

3. UT T, UT T, YT T, UT T, 4T X, . . . WX T,y U T

4. @,m,ux:ﬁ,uwx,uxx,... LT T, UT Ty T Ty U Ty UL Ty« . .

Clearly only the first and the last trail are progressive and condense into an infinite trace. <
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It is not difficult to see that condensed trails are traces, and that the condensation of a
progressive trail is infinite. This observation then provides us with the right tool for defining
the winning conditions of the tableau game.

Definition 7.19 Let m be some infinite 7-match. For n € {u, v}, we define an n-trail on 7 to
be a progressive trail on m whose condensation is a n-trace. A infinite 7-match 7 is winning
for Refuter if it carries a u-trail. <

Remark 7.20 It will often be convenient to consider a variation 7" of the tableau game T,
the difference lying in the admissible moves for Refuter at sequent positions:

e In 7W, at a sequent position ¥, Refuter may pick any pair (I',¢) with ¢ ¢ T and
MU {¢} C 3. (That is, we relax the condition that I' U {¢} must be equal to X.)

In case Refuter, at some position ¥, moves to a position (I', (), we say that he weakens away
the formulas in ¥\ (I' U {¢}). This adaptation is the game-theoretic analogon of adding a
weakening rule to a derivation system.

At first sight it may seem that Refuter has more power in 7" than in 7, but in fact the
modification does not change the powers of the players. The reader is asked so supply a proof
for this statement in Exercise 7.1. <

Exercises

Exercise 7.1 (admissibility of weakening)

In this exercise the reader is asked to prove that each player has the same power in the
version TW of T in which Refuter is allowed to use some form of weakening, cf. Remark 7.20.
That is, for every sequent ® it holds that

® € Wing(7) iff ® € Wing(T"). (49)
(a) Prove (49) using the adequacy theorem for tableau games.

(b) Prove (49) without making reference to the semantics of p-calculus formulas.

Exercise 7.2 (refutation or not?)
In this exercise we consider the following formulas

¢ = vypz ((pAOz)V (DA OY))
¢ = px((pAOz)V (DA OY))
b = Vfcuy(pVDw ) A (p Vv Oy))
v o= puy((VOY)A(pVOy))

and we note that ¢ —c ¢’ —=c (pACY )V (DA CY) and Y —¢ ' —¢ (pV OY) A (p Vv OY).
Consider the following partial strategy for Refuter in 7V @{¢,¥}.
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In this proof tree we indicate the occurrence of weakening by placing the formulas that
are weakened away between square brackets. For instance, in the sequent p, &, [Ov], Oy
the principle formula is ©¢’, and the formula Ot is weakened away.

@, P @, P o,
) o, P a oy
p,O¢',0¢,p  p, O¢’, [OY], Oy P, e, p, 09" b, Op, [Oy], 0y’
p,O¢',p,p Vv OY' p,O¢', 0, p Vv Oy’ P, e, pV Oy, p P, Cp,p Vv Oy, Oy
P, O9',pV Oy, pVv Oy’ P, Op,pV Oy, p Vv Oy’
pACY, PV Oy, pVv Oy PA e, pVOY,pVOY

(PACY )V (BACP), PV DY, pVv OY
(PACY)V(BAC), (pVOY) A (pVOyY)
(PAOCY)V (BACY), Y
[N

/
b

@,

A
I

(a) Give, for each of the four leaves labelled *, a u-trace to this leaf starting at the node
labelled e.

(b) Is the strategy depicted in the proof tree winning for Refuter in 7V @{¢,}?

7.2 Determinacy and adequacy

» introduction to be supplied

7.2.1 Determinacy

Proposition 7.21 (w-Regularity) Let ® be some pML-sequent. Then the tableau game
T(®) is w-regular. That is, there is some w-regqular language L such that any match 7 of

T(®) is won by Builder iff m € L.
» Proof TBS

Theorem 7.22 (Determinacy) Let ® be some puML-sequent. Then the tableau game T (X)
is determined: either Builder or Refuter has a winning strategy.

Proof. This is an immediate consequence of Proposition 7.21 and Corollary 5.32. QED

7.2.2 Adequacy

Theorem 7.23 (Adequacy) Let ® be some pML-sequent. Then ® is satisfiable iff Builder
has a winning strategy in the tableau game T (D).
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We will discuss and prove the two directions of the adequacy theorem separately.

Proposition 7.24 (Soundness) Let ® be some pML-sequent. If ® is satisfiable then Builder
has a winning strategy in the tableau game TQO.

Proof. Assume that the uML-sequent & is satisfied at the point sy of the model S. This means
that (A ®,so) is a winning position for 3 in the evaluation game &€ := E(A\ @,S)Q(A P, sp).
Fix some positional winning strategy f for 3 in this game.

We will use this strategy f to provide Builder with a winning strategy f in 7@Q®. Next to
the definition of f we will associate, with each f guided match 7, a state s; € S. Intuitively,
the role of s; will be as follows. Let # € PMp be some partial match ending at a position of
the form (I', g V 1); that is, Refuter has just picked the disjunction g V ¢1 as his principal
formula. Then fwill suggest to Builder to choose the sequent T, ;, where ; is 3’s choice
at the position (g V 1, 7). For this to work, and in particular, to make sure that Builder
wins all infinite f—guiNded matches, she needs to maintain a rather tight connection between
the strategies f and f, to the effect that

(*)  every trail on an f—guided T-match corresponds to an f-guided £-match.

More precisely: along with the definition of f we will inductively define a monotone family
pr of functions, where for every f-guided match 7 that ends at a sequent position, p, maps
every trail 7 on 7 to an f-guided E-match p,(7) such that last(pr(7)) = (last(7), sx) and

7= (px(7))L;

where we recall that, generally, pr, denotes the left projection of the match p, that is, the trace
of formulas determined by p, cf. Definition 2.41. Here the monotonicity condition requires
that 7 C 7’ and 7 C 7/ imply px(7) C px (7). Note that it follows from this that S, s IF ¢,
for every formula ¢ which belongs to the sequent that constitutes the final position of .

At the start of the game, the match 7 consists of the single position ®; we define s, := sg
and pr(7) := (last(7), so), for any trail 7 on 7. (Note that any such trail consists of a single
formula first(7) = last(7) € ®.) With these definitions it is easy to see that the condition (*)
is met. _

For the inductive step, assume that 7 is an f-guided match ending at a sequent position,
say, last(m) = X, and that we have defined the position s, satisfying (*). We already observed
that this implies that S, s, IF ¥. Assume that Refuter’s move at this position is the pair (I', ),
extending 7 to the match ' = 7 - (T, o). We can now simply define s,/ := s,. For the next
step we make a case distinction as to the nature of .

Case o = T. In this case the next position is I', so that the match 7’ is extended to
7 i=m-([,T)-T.

We define s, := s;.

In order to check that the condition (*) still holds, consider an arbitrary trail 7 on

7. It is easy to see that 7 must be of the form 7 = o - v, where o is a trail on T,
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last(o) = v and (1,1) belongs to the passive trail relation. From this it is immediate
that 7 = 0. Furthermore, by the induction hypothesis we have ¢ = (pr(c))r. We define
P (T) := pr(0), and so we obtain 7 = (p,~ (7)) as required.

Case ¢ = 1. Note that, actually, this case cannot occur since S, s, IF X.

Case ¢ = £. This case is left as an exercise for the reader.

Case ¢ = o V 1. This is the only case where we need to extend the definition of .]? Define

Flr (D, 00V 1) :=T U {p;},

where ¢; is the formula picked by 3’s winning strategy f at position (¢g V ¢1, sx). Note
that the latter position is winning for 3 by the inductive hypothesis, so that f provides
a legitimate move. In this case the match 7’ is extended to

" i=m (T, 00 Vo) - TU{pi}.

We define s, := s; and proceed to check the condition (*). For this purpose consider
an arbitrary trail 7 on 7”. There are two subcases to distinguish:

Subcase T = o - p;, with last(c) = ¢o V ¢1. By the induction hypothesis we have o =
(pz(0))r. Now define pn (1) := pr(0) - (@i, Sx), so that we obtain (p,~(7))r =
(pr(0)L-0i =G pi =G i =T.

Subcase T = o -1, where last(c) = 1 for some idle formula ¥ # ¢g V 1. In this case it
is easy to see that 7 = 7, and we may proceed as in the case where ¢ = T.

Case o = ¢y A 1. In this case the next position in T is I', ¢g, ¢1, so that the match 7’ is

extended to
1

m =7, 00 A1) - T'U{o, 1}
We define s;» := s; and proceed to check the condition (*). For this purpose consider
an arbitrary trail 7 on 7”. As in the previous case, where ¢ was a disjunction, there
are two subcases to consider: an active one where 7 is the continuation of a trail ¢ on 7
with last(o) = ¢ and last(7) € {¢0, p1}, and a passive one where 7 is the continuation
of a trail o on ¢ with the side formula 1) = last(c). In both cases it is straightforward
to check that we can update the map p in such a way that (*) holds indeed.

Case ¢ = nx 1. This case is left as an exercise for the reader.

Case ¢ = Ogtp. In this case the next position in T is the sequent DJIE U {v}, and we find

=7 (T, Oq) - 0712 U {3}

Define sp» := t, where t € Ry[s] is I’s choice at position ($gv, s5) of the evaluation
game as suggested by her positional strategy f — recall that by the induction hypothesis
we have S, s, IF Ogi.
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To show that the condition (*) holds, we consider an arbitrary trail 7 on 7”’; this trail
must be of the form oy for a (unique) 7-trail o, where either x = ¢ and last(c) = g1,
or last(c) = Ogy. Furthermore, inductively we may assume that o = (p.(0))r.

Here we distinguish two subcases:

Subcase x =1 and last(c) = Ogip. In this case we have 7 = o - ¢). Define p,n (1) =
pr(0)-(¥,t), then we find (p (7))L = (pr(0))p - =7 = O"/\’l/} = T as required.

Subcase last(o) = Ogx. Now define pp» (1) := pr(o) - (x,t); that is, the continuation
of the &-match pr(c) in which V at position (last(c),sz) = (Dax, Sx) picks the
successor ¢ of sr, thus moving the £&-match to position (x,t) = (last(7), s). Here
we find (p7 (7))L = (px(0))L - X =0 Xx =07 - X =T, again as required.

Case ¢ = Ogp. In this case Refuter gets stuck and loses immediately.

To see why fis a winning strategy for B in TQ®, we consider an arbitrary full fv—guided
match 7. First of all, observe that in all the cases above where the position (I', ) belonged
to Builder, we could indeed supply her with some move. Hence, as long as she maintains the
condition (*), Builder cannot get stuck. In particular, this means that she wins 7 in case it
is finite.

This leaves the case where 7 is infinite. Consider an arbitrary progressive trail 7 on T,
then our goal is to show that 7 is a v-trace. The point, here, is that 7 is the limit of a
family of trails, each of which corresponds to an f-guided match of £. But then 7 itself also
corresponds to an f-guided £-match pr(7), namely, the limit of the mentioned £-matches —
it is here that we need the monotonicity condition. But since f is assumed to be winning
strategy for 3 in &, this match p.(7) is won by 3, which simply means that 7 = (p,(7)r is a
v-trace indeed. QED

Turning to the completeness of the tableau game, the intuitions are as follows. Assume
that Builder has a winning strategy f in the tableau game 7@Q®, we will use this strategy to
construct a model Sy in which ® can be satisfied. For the states of this model, we will take
f-guided matches — but only the ones in which Refuter plays in a certain, locally erhaustive
way. To make these intuitions precise we need some definitions.

Definition 7.25 A trace 7 is called local if it features no transition of the form Q¢ —¢ ¢,
for any modality ©. A T-match 7 is called local if it features no modal position, that is, no
positions of the form (I', Cg1p) or (I', Og¢)). <

Note that a local trace may end at a box- or diamond formula; in fact it may also start
with one, but only if it is a one-formula trace. Concerning the relation between local matches
and local traces: a match 7 is local if, and only if, each of its trails condensates to a local
trace.

As mentioned, the only strategies of Refuter that we will take into account, when con-
structing a model S; from a winning strategy for Builder, are the locally exhaustive ones.
Intuitively, a strategy is locally exhaustive if Refuter makes sure that every boolean or fixpoint
formula will become principal, before he is allowed to pick a modal formula.
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Definition 7.26 Let ® be some pML-sequent. A T @Q®-match 7 is locally exhaustive if it local
and satisfies the following conditions:

1. at a sequent position ¥ in m, Refuter does not pick an atomic or modal formula if there
are still boolean or fixpoint formulas available in 3;

2. if 7 is infinite, say, 7 = (I'n,(n)n<w, then for every k < w and for every formula
p € X :=T, U{(,} that is either a conjunction, a disjunction or a fixpoint formula,
there is some m > k such that ¢ = (.

3. 7 is maximal with respect to the the above two conditions.

The collection of these matches is denoted as LE.
A strategy g for Refuter is locally exhaustive in TQ® if it is reductive, and every local
g-guided T @®-match satisfies the first two of the conditions above. <

Example 7.27 Of the four strategies in Example 7.12, only the rightmost one is locally
exhaustive.

Also note that ‘locally exhaustive’ does not necessarily mean ‘fair’, and certainly not
‘winning’. For instance, any locally exhaustive strategy operating on the sequent ¥ =
{vax z,0p, O&p} will keep picking vz x as the principal formula, and thus cause Refuter to
loose the match. He would thus miss the easy win arising from picking the formula ¢p. <

Remark 7.28 Locally exhaustive strategy are not hard to find. Refuter can easily arrange
one by maintaining, throughout any match of 7@®, a priority list of all boolean and fixpoint
formulas in CI(®). At any position during the match 7 he then picks, as the principal formula,
the first formula on this list that belongs to ¥; and after this move he updates the list by
moving the chosen formula to the end of the list. <

Locally exhaustive matches are either infinite or end with a sequent that consists of modal
and atomic formulas only. As we will see now, if we can guarantee that these matches are
finite, the completeness proof becomes much easier.

Recall that a modal p-calculus formula £ is guarded if for every subformula of & of the form
nx.d, x is guarded in §, that is, every free occurrence of x in § is in the scope of a modality.
The key property of these formulas is that any local trace starting with a guarded formula is
finite. As a corollary of this, any local 7-match starting with a guarded sequent is finite as
well, as the following proposition shows.

Proposition 7.29 Let ® be some pML-sequent consisting of guarded formulas, and let \ be
some local match of TQ® in which Refuter plays reductively. Then X is finite. In particular,
every locally exhaustive match is finite, and ends with a sequent consisting of modal and
atomic formulas only.

Proof. Let CI'(®) be the smallest subset of CI(®) that contains ® and is closed under
taking the direct derivatives of boolean and fixpoint formulas. For any formula ¢ € CI¢(¢p),
define ld(p), the local depth of ¢, as the maximal number of steps from ¢ to an atomic or
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modal formula — this is well-defined, precisely by guardedness. Extending this definition to
sequents, we put
d(®) =Y ld(y).
ped
Now let A be some local match in which Refuter plays reductively. It is then straightforward
to see that the local depth of the successive sequents in \ strictly decreases, and from this it
immediately follows that A is finite. QED

Remark 7.30 It also follows from Proposition 7.29 that, in a tableau game that starts from
a guarded sequent, every reductive strategy of Refuter that does not pick modal or atomic
formulas as principal formulas, is locally exhaustive. <

As we will see now, Proposition 7.29 simplifies the construction of a model from a winning
strategy for Builder significantly.

Proposition 7.31 (Completeness for guarded formulas) Let ® be some uML-sequent con-
sisting of guarded formulas. If Builder has a winning strategy in the tableau game TQ®, then
® is satisfiable.

Proof. For the time being we restrict the proof to the monomodal case. Assume that B has
a winning strategy f in 7@®; we will use f to define a Kripke model Sy, and then show that
® is satisfiable in Sy.

For the definition of Sy we recall some notation: where (m;)o<;<k is a tuple of sequences,
we let (), ™ denote their concatenation, that is: (), m 1= 7o - 71 - - - 7.

Basically, for the set S ¢ of states of Sy we take the ‘collection of f-guided matches where
between the modal positions we find locally exhaustive matches. Formally, a state of Sy will
be any tuple of the form

(mi)o<i<k

where k > 0, the sequence (), m; is an f-guided match, m is a locally exhaustive match
starting at ®, and for each i > 0, m; is a match of the form m; = (T, Oi) - A with \; a locally
exhaustive match starting at the position O~'T"; U {¢;}.

Note that by Proposition 7.29 every m; must be finite (due to guardedness) and end with
a sequent position consisting of atomic and modal formula only (due to maximality); we will
write X; := last(m;) (so 3; = last(\;) for i > 0). Observe as well that, since (), m; must be
a well-defined T-match, the latter condition implies that $p; € ;1 and Ty :_El_lzi,l. In
a picture we denote the match (), m; as follows:

55 S Yo ([, < Oy ufodeee e Y o (T, © O, Udony e )y
o (I't, Ce1) 1 {soi} 1 Tk, Owr) kU {pr} k
) A1 Ak
™ e

For the accessibility relation Ry we take

Ry = {((Wz')z'sm (mi)icka1) | (i)i<ks (Ti)i<k+1 € Sf},
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and the valuation Vy is given by

Vi(p) == {(m)i<k | p € last(my}.

Consider any locally exhaustive match in 7 that starts with the position ®, and let sy be
the one-item tuple in Sy corresponding with this match. Our goal will be to show that

Sy, s0 Ik ®. (50)

For the proof of (50), fix some formula £ € ®. We will provide 3 with a winning strategy
f in the evaluation game & := E(®,Sy)Q(E, s0). The strategy f will be defined by induction
on the length of a partial £-match, and we will simultaneously prove that 3 can maintain a
certain safety condition that we define now.

Consider an arbitrary £-match p ending at position (¢, s). Then, focussing on the
modal positions in p, there is a unique way of writing p = pg - ... pr_1 - Pk, such that
last(po), - - -, last(pk—1) are the only modal positions on p. Similarly, there is a unique way
of writing s = (7;);< as in the definition of states given above; here for i > 0 we will write
m = (i, Op;) - Ni. We call p safe if k = k' and, for all i < k, (p;)r, is a trace on m;, and
(pr)r is a trace on some initial segment of 7. (Recall that, given a match p of the evaluation
game, we write pr, to denote the formula part of p, that is, where p = (¢n, tn)n<x, we have

L = (Spn)n<n-)
The key claim in the completeness proof is then the following.

CraiM 1 Let p be some safe partial match of £. If p € PM3 then 3 has a legitimate move
such that the resulting partial match is safe, and if p ¢ PM3 all possible continuations of p
are safe.

PrROOF OF CLAIM Let (¢, s) be the last position of p, and let py,...,pr and m,..., 7 be
the respective matches of £ and T that witness the safety of p. By the safety condition, the
final part py of p is a trace on some initial segment 7. of 7. We make a case distinction as
to whether ¢ is modal or not.

We first consider the case where ¢ is not modal. Since 7, is a locally exhaustive match, we
may without loss of generality assume that ¢ is the principal formula of 7}, that is, last(m),)
is of the form (I', ) (and =}, is a proper initial segment of 7). Note that here ¢ ¢ I since we
assume that Refuter plays reductively. We make a further case distinction as to the nature
of .

Case ¢ = T. In this case p € PMy, but since V has no legitimate moves, the statement in the
claim about all possible continuations of p is vacuously true.

Case ¢ = L. Note that actually this case cannot occur since by assumption the match (O, m;
is f-guided; hence it cannot feature a position of the form (I', L) where Builder would
get stuck.

Case ¢ = @y V 1. Builder’s strategy f at the partial match (©z<k m) © m, (of which the
last position is last(m;,) = (I',¢)) informs her which one of the disjuncts of ¢ to pick.
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Say that f prescribes to pick the disjunct ¢;, moving in 7 to position I'U{¢;}, then in
the evaluation game 3 extends the partial match p to p* :=p- ;.

Now observe that by definition of states, the sequence 7}, - I', ¢; is an initial segment of
7. It is then straightforward to verify that p* is safe — the main observation is that
its final part (p;)y, is obviously a trace on 7}, - T', ¢;.

The remaining non-modal cases are left as exercises for the reader.

We now consider the case where ¢ is modal. Since 7 features no modal positions, any
modal formula, once present at some sequent position on 7, will passively remain present
until the final position of 7 is reached. Consequently, we may, without loss of generality,
assume that 7 = m;. Recall that the final position of 7, must be a sequent position, say,
Y := last(my), and that we have ¢ € ¥. We now make a further case distinction as to whether
© is a box- or a diamond formula.

Case ¢ = <. In this case we have to find, in the evaluation game, a successor s of s for
3, and we look for inspiration at the tableau game. That is, suppose that in 7Q®, at
position 3, Refuter picks &t as the next principal formula, that is, he extends 7 to the
match 7 (I', O¢p), where I' := X\ {O9p}. The next position in the tableau game is then
fixed as © := O~ U {4}, extending 7 to 7 - (I', Ov) - ©.

Now let Ax1q1 some locally exhaustive match starting at position ©, and such that
O(m)i<k+1 is an f-guided match of TQ®, where 711 := (I', Otp) - Agy1. Define s :=
(m;)i<k+1, then it is straightforward to verify that (s,sT) € Ry, and so 3 is allowed
to pick s* as the required successor of s in €. Furthermore, it is immediate by the
definitions that p* := p- (1, sT) is a safe extension of p.

Case ¢ = O1p. Assume that in &, V picks some successor t of s. By definition of Ry, with
s = (m;)i<k, the state ¢t must be of the form ¢t = (7m;)j<g4+1, where for some diamond
formula Cx € ¥ = last(my), we have first(mp1) = (X \ {Ox}, Ox). Write w1 = (2
{Ox}, Ox) - Akt1, then Ag4q is a locally exhaustive match; and writing © := first(Agt1),
it must be the case that © = O~1(X\ {Ox}) U {v} =07 'S U {¥}.

But as we already saw, we have ¢ = Oty € 3, so that we find ¢ € ©. In other words,
we have shown that the extension p* := p- (1, t) of p is safe indeed.

This finishes the proof of the claim. <

To see why Claim 1 suffices to prove (50), consider an arbitrary full match p of £, where 3
plays the strategy suggested by the claim. If p is finite then it is obvious that 3 is the winner,
since it is an immediate consequence of the claim that she will not get stuck.

Now consider the case where p is infinite. It follows by guardedness that there is a unique
way of splitting up p as p = (O, ,, pi, such that last(po), last(p1),... are the modal positions
on p. Furthermore, since 3 maintained the safety conditions throughout the match, with each
k < w we may associate a position s, = (m;);<i such that (), 7 is an f-guided match of
TQ®, and for all i < k, (p;) is a trace on m;. It is then not hard to see that pr is a trace
on (O, T, while the latter match is clearly f-guided. It follows that p must be a v-trace,
hence, winning for 3 in &. QED
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We now turn to the completeness proof in the general case, that is, where we no longer
restrict to guarded formulas. The set-up of the proof is basically the same as in the guarded
case: given a sequent ® for which Builder has a winning strategy in the tableau game, we
construct a model Sy based on Builder’s winning strategy f. In fact we would like to define
the set S of states in exactly the same way as before, but we face the problem that now
locally exhaustive matches are no longer necessarily finite. As a consequence, given a tuple
s = (m;)i<k of such matches, we can no longer concatenate the m;’s, leave alone require that
such a concatenation is an f-guided 7-match. As a solution to this problem we define, for
each infinite match 7 a finite representation 7. We require this finite representation to be an
initial segment of 7 which is long enough to cover, in a sense to be made precise, all finite
traces on 7. As our states we can then take those tuples s = (7;);<j for which the sequence
s = (Ti)i<k - Tk is an f-guided T-match.

To define the operation ~ that provides a finite representation of 7, we need some prepa-
rations. Recall that we write 7 : ¢ —¢ ¢ if 7 is a finite trace such that first(r) = ¢ and
last(T) = 1. In case T passes a fixpoint formula, we write 7 : ¢ —»% 1, where £ = msf(7) is the
most significant formula on 7, and if there is no such fixpoint formula, we write 7 : ¢ —& ).

Definition 7.32 Let 7 and 7" be two traces. We say that 7 and 7’ are interchangeable,
notation: 7 ~ 7', if we have both 7: ¢ -»& ¢ and 7" : ¢ % ¥ for some o € Cl(p) U {o}. <

In words, 7 and 7" are interchangeable if first(r) = first(7') and last(7) = last(7’), and
either both 7 and 7' pass some fixpoint formula and msf(7) = msf(7’), or neither 7 nor 7/
passes a fixpoint formula. The name given to the interchangeability relation is inspired by
the following proposition. We omit its proof, which is a fairly straightforward manipulation
of the definitions.

Proposition 7.33 Let 7 = O, ., Tn and 7" = (O, 7, be two infinite traces such that
Tn ~ 7}, for all n. Then 7 and 7" have the same type, that is, for n € {u,v} it holds that T is

an n-trace iff 7' is an n-trace.

Obviously, the interchangeability relation, restricted to formulas in the closure of some
fixed set @, is an equivalence relation of finite index.

Definition 7.34 Let A = (2, - (I'n, (n))n<w be an infinite, locally exhaustive match. Let
MFor(A) and LFor(\) be, respectively, the sets of modal and literal formulas occurring in
some sequent on A, and let Try,(\) be the set of traces on A that end at a literal or modal
formula. For 7 € Try, (M), fix 7 as some trace of minimal length on A such that 7 ~ 7.

Let A be the shortest initial segment of A which is long enough to carry every trace in
{7 | 7€ Trim(\)} from beginning to end. For any match of the form 7 = (I', ) - A, we will
write 7 := (T, ) - \. We shall refer to A\ and 7 as the finite representation of A\ (respectively,
of ). <

Arguing for the correctness of this definition, our point is that, due to the relation ~ having
finite index, the set {7 | 7 € Try,(A\)} is finite. From this it follows that A is well-defined,
and in fact, finite.

We are now ready to prove the completeness of the tableau game for arbitrary sequents.
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Proposition 7.35 (Completeness (general case)) Let ® be some pML-sequent. If Builder
has a winning strategy in the tableau game TQ®, then ® is satisfiable.

Proof. Let ® be as in the statement of the theorem. As in the guarded case, we will define
a model Sy = (Sy, Ry, V) in which we will subsequently show ® to be satisfiable.
As announced, a state of Sy will be any tuple of the form

s = (Wi)ogigk,

provided that 75 := (O, <k 7;) - T is an f-guided match, my is a locally exhaustive match
starting at ®, and for each ¢ > 0, m; is a match of the form m; = (I';, Op;) - A; where ); is a
locally exhaustive match. For the accessibility relation Ry we take

Ry = {((m)igk, (Ti)i<kr1) | (73)i<k (Mi)i<ki1 € Sf},
and the valuation V; is given by
Vi(p) = {(mi)i<k | p € last(mx}-

Observe that, in the case of guardedness we find that A= A; from this it follows that the
two definitions coincide, which justifies our use of the same notation.

As before, let sg be the one-item tuple in Sy corresponding with some 7-match starting
from the position ®. Our goal will be to show that

Sy, s0 Ik ®. (51)

As in the guarded case, for the proof of (51), we will provide 3 with a winning strategy fin
the evaluation game & := £(P,Sy)Q(¢, s9) for some arbitrary but fixed formula £ € ®, and we
will show that she can maintain the following notion of safety during any f—guided E-match.

Consider an arbitrary £-match p ending at position (¢,s). Then, focussing on the
modal positions in p, there is a unique way of writing p = pg - ... - px—1 - Pk, such that
last(po), ..., last(pg—1) are the only modal positions on p. Similarly, there is a unique way
of writing s = (m;)i<k as in the definition of states given above; here for i > 0 we will

—

write m; = (T, Ow;) - Ai. We call p safe if k = k' and, for all i < k, (p;)r is a trace on
i, and (pg)r is a trace on some initial segment of 7. Note that from this it follows that

—~

(pi)r. - (pr—1)r - (pr)r is a trace on ms.
The key claim in this version of the completeness proof is the following.

CrAM 1 Let p be some safe partial match of £. If p € PM3 then 3 has an legitimate move
such that the resulting partial match is safe, and if p ¢ PM3 all possible continuations of p
are safe.

PrOOF OF CLAIM The proof of this claim is very similar to that of the corresponding state-
ment in the guarded case. Let (¢, s) be the last position of p, and let py, ..., pr and mo, ..., 7
be the respective matches of £ and T that witness the safety of p.
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By the safety condition, the final segment pj of p is a trace on some initial segment 7},
of m,. The key innovative aspect in the current proof is the following. By the definition of a
state, the sequence 74 := ((; 1, T:) - Tk is a match which has 7, as its tail; moreover, 7, is
f-guided, so that we may use it to define 3’s strategy in £.

For a proof of the claim, we make a case distinction as to the nature of . We only cover
the cases where ¢ is a disjunction or a diamond formula.

Case ¢ = g V 1. Since 7y is a locally exhaustive match, we may without loss of generality
assume that ¢ is the principal formula of 7, that is, last(m),) is of the form (T, ¢) (and
7, is a proper initial segment of 7). Builder’s strategy f at the partial match 7y (of
which the last position is last(m;,) = (T',¢)) informs her to pick one of the disjuncts
of ¢, say, ¢;. She now picks the same disjunct in the evaluation game, extending the
match to p* := p- (¢4, s). It is completely straightforward to verify that this is indeed
a safe continuation of p.

In the case where ¢ is a modal formula, the key step is the following. Up to this moment
we have been exclusively working with the entire match 7, and the entire trace pg, being the
final part of the £-match p. Since we are about to make a modal move, the trace 7, := py,
and the finite representative 7 of m; now come into the picture. Note that by definition of 74
we have 7 ~ pg, and that by definition of 7, this 7 is actually a trace on 7. Furthermore,
since Ty, is an initial segment of 7, it is immediate that the sequence (5), ., 7;, being an initial
segment of the f-guided T@®-match mg = ((;-; i) - T, is itself an f-guided T@®P-match
as well. Finally, observe that last(7) = last(px) = last(p) = p; so, since ¢ is modal and 7y, is
a trace on 7, this means that we find ¢ € X, where the sequent ¥ is the last position of 7.

Case ¢ = <. In this case we have to find, in the evaluation game, a successor s of s for
3, and we look for inspiration at the tableau game. That is, suppose that in 7Q®,
at position ¥ = last(7y), Refuter picks &1 as the next principal formula, that is, he
extends the T-match (O, T to (O, ™) - (I', O¥), where I := X\ {O1p}. The next
position in the tableau ga_rne is then fixed as © := O0~1T"U {9}, extending the T-match
further to ((;<, i) - (T, Ov) - ©.

Now let Ag41 and mp4q = (I', O9)) - Ag41 be such that Agyq is some locally exhaustive
match starting at position ©, and (QKk ﬁ) - mgy1 18 an f-guided match of TQ®.
Define st := (m;);i<g+1, then it is straightforward to verify that (s,s™) € Ry, and so 3
is allowed to pick sT as the required successor of s in £. Furthermore, it is immediate
by the definitions that p* := p- (¢, sT) is a safe extension of p.

We leave the case where ¢ = Ot as an exercise for the reader. <

Let fbe any strategy in £ as suggested by the claim, and let p be any f—guided full match
of £. In order to show that 3 is the winner of p, we distinguish cases. First of all, it is an
immediate consequence of the Claim that 3 always has a move available if it is her turn, and

so she never gets stuck.

Hence, we may restrict attention to the case where p is infinite. For starters, note that
every finite initial segment of p is safe. We make a further case distinction, as to the number
of modal positions in p (that is, positions (¢, s) where ¢ = Q1) for some modality ©).
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» The case where p passes only finitely many modal positions is left as an exercise
for the reader.

The interesting case is where p passes infinitely many modal positions; in this case there is
a unique way of writing p = (O, pr, where (last(py))r<w is the sequence of modal positions
on p. Write last(pr) = (¢k, sk), then we may define (7y)k<,, such that s; = (m;);<j for all k.
It easily follows from the definitions of S; and Ry that the sequence (), 7 is in fact an
f-guided T@®-match. But since every finite initial segment of p is safe, it easily follows that

for each k, the trace 74 := (pg)r is a trace on 7. It then follows that the trace 7 := (O, 7%
is a trace on (), Tk, and hence, a v-trace. It also follows that 75, ~ (pi)r, for each k < w,
and so p must also be a v-trace by Proposition 7.33.

This finishes the proof of (51), and hence, that of the proposition. QED

Exercises
Exercise 7.3 » Show that Refuter may always restrict to a reductive strategy. That

is,

Exercise 7.4 Show that for guarded formulas, we may fix the order in which Refuter picks
formulas. Does this also hold in general?
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7.3 Decidability of the satisfiability problem
7.4 A cut-free proof system

7.5 Other derivation systems



10 Model theory of the modal u-calculus

In this Chapter we will prove some model-theoretic results about the modal p-calculus.

» overview of chapter to be supplied

10.1 The cover modality and disjunctive formulas

In the theory of the modal p-calculus, a fundamental role is played by the so-called disjunc-
tive formulas. These are built using the cover modality discussed in Section 1.7, and, as
discussed there in the setting of basic modal logic, characterised by a severely restricted use
of conjunctions.

» For the time being we confine attention to the monomodal case

We first introduce the full language of the nabla-based version of the modal p-calculus.
This is simply the extension of the language MLy with fixpoint operators. Recall that in this
language we work with the finitary versions of conjunction and disjunction.

Definition 10.1 The formulas of the language uMLy are given by the following grammar:

o u=p | D[V | AP |V | pre | vrey

where p and x are propositional variables, ® C,, uMLy, and the formation of the formulas
nx @ is subject to the proviso that there are no occurrences of the literal = in (. <

As in the basic (fixpoint-free) case, the only conjunctions that we allow in a disjunctive
formula are of the form « e ®, which stands for the conjunction (/A ) A V®. In other words,
the basic idea is to define the disjunctive formulas of the modal u-calculus using the following
grammar:

o u=p | DV |aed | ury | vy,

where, besides the usual positivity constraint on the formation of fixpoint formulas nx @, we
also require that no occurrence of z is in the a-part of a subformula o e ® of .

This is not ezactly how we define disjunctive formulas, however. It will be convenient
to make an a priori distinction between free and bound variables; roughly, the idea is that
the free variables can only occur (positively or negatively) among the proposition letters that
occur to the left of the bullet conjunctions, while the bound variables can occur anywhere else
but not there. It also turns out that we do not need to take literals as disjunctive formulas,
see Example 10.3 below.

Definition 10.2 Let P be a finite set of propositional variables. To define the set uDML(P)
of (monomodal) disjunctive formulas in P we start with the formulas given by the following
grammar:

piu=x | VO | aed | uxp | vryp
where x is a propositional variable not in P, ® is a finite set of formulas from this grammar,
« is a finite set of literals over P, and the formulas pz ¢ and vz ¢ can only be formed if is ¢
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guarded in x. The set uDML(P) consists of all formulas ¢ that meet this pattern and satisfy
the condition that F'V (§) C P.
We let uDML be the set of formulas that are disjunctive in some set P. <

» Note that disjunctive formulas are tidy and guarded.

In practice we will often pretend that atomic formulas, and in fact all propositional for-
mulas, are disjunctive. This is justified by the following example.

Example 10.3 As in the basic case, the constant | can be seen as an abbreviation of the
disjunctive formula \/ @. Different from the basic case, however, we can do without the
constant T as a primitive constant either, since the presence of the greatest fixpoint operator
enables us to write

T=vz (e Ve {z}).

Literals do not qualify as disjunctive formulas, but any literal £ is equivalent to a disjunctive
formula as well:

(={l}e{T}V{l}eo.
For this reason we may in practice pretend that atomic formulas, and in fact all propositional
formulas, are disjunctive.

Another example of a disjunctive formulas is px ({p, G}e {x, vy ({p} o{xV y}) }), but not
its subformula {p,q} e {z,vy ({p} e {zVy})} (since in the latter formula z is free, and hence,
it may not occur in the set to the right of either of the bullet conjunctions). Further examples
of non-disjunctive formulas are px x (unguarded) and px ({ﬁ, G} e {x, vy ({p, x} e {w, T}) })
(here the subformula {p,z} e {z, T} is not admissible since z, being a bound variable, may
not occur in the set to the left of the bullet conjunction). <

Turning to the semantics of disjunctive formulas, below we introduce the evaluation game
for this language. For this definition we recall that a relation Z C S x S’ is full on some pair
(U, U") € p(S) x p(8") if U € Dom(Z) and U’ C Ran(Z), or, in other words, if every u € U
is related by Z to some v’ € U’, and vice versa.

Position Player | Admissible moves

(V @,5) 3 | {(ps) | pe @}

(ae®,s) Vo [ {(Ae,s), (VO,5)}

(A a,s) with s IF A« v 1)

(A a,s) with sl A\« 3 %)

(V,s) 3 {Z C®x R[s]| Zis full on ® and R[s]}
Z C puDML(P) x S v |z

(M2.0, 5) - {(6z2, )}

(x,s), with x € BV (£) - {(6z,9)}

Table 23: Evaluation game for disjunctive formulas (subformula version)
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Definition 10.4 The positions and admissible moves of the evaluation game for clean dis-
junctive formulas are given in Table 23. The winning conditions are as in the evaluation
games for arbitrary pML-formulas. <

Most of the moves of the evaluation game speak for themselves (given the interpretation
of ve® as (/\ a) A V®). A minor deviation from the earlier evaluation games is that here we
break off a match immedidately if we reach a position of the form (/A «, s) where « is a set of
literals, rather than breaking down the conjunction in subsequent moves.

What makes the evaluation game for disjunctive formulas special is the kind of move that
3 makes at a position of the form (V®,s): here she picks a relation Z C puDML(P) x S of
witnesses (with the requirement that Z is full on ® and R][s]). Such a binary relation Z thus
forms a new type of position, which is not a formula-state pair, but rather, a set of such pairs.
These relational positions all belong to V, and his task at a position Z is simply to pick a
witness from Z, that is, a pair (¢, t) in Z. Of course this is in accordance with the semantic
meaning of the cover modality.

In the following definition and propositions we isolate the key game-theoretic property
of disjunctive formulas. Recall that, for a given strategy f in some evaluation game E£(&,S)
starting at position (&, s), we call a position (p,t) f-reachable if there is some f-guided match
in which the position (p,t) is reached. We say that the state ¢ is f-reachable if there is some
formula ¢ such that the position (¢, t) is f-reachable.

Definition 10.5 Let ¢ be a disjunctive formula, and let (S, s) be a pointed model.

A strategy f for 3 in the evaluation game £(&,S)Q(E, s) is called separating if at every
f-reachable position of the form (V®,s), f picks a relation Z C ® x R[s] such that for every
t € R[s] there is exactly one ¢ € ® such that (p,t) € Z.

A strategy f for Fin £(&,S)Q(¢, s) is thin if for every t € S, if ¢ is f-reachable, then there
is at most one formula ¢ of the form « e ® such that (¢, t) is f-reachable.

If f is a separating strategy which is winning for 3 in £(&,S)Q(¢&, s) then we say that & is
strongly satisfied in S at s, notation: S, s Ik, €. <

The name ‘separating’ is chosen for obvious reasons: if, at position (V®,s), 3 picks a
functional relation Z, she effectively separates the elements of ® from one another, in the
sense that there are no two witnesses (p,t),(¢’,t) in Z with ¢ # ¢'. It is easy to see that
separating winning strategies on tree models are thin.

Proposition 10.6 Let £ be a disjunctive formula, and let (S,s) be a tree model. If f is a
separating winning strategy for 3 in £(&,S)Q(&, s) then f is thin.

Strong satisfaction is a very strong kind of satisfaction indeed, and in later chapters we
will use it as a key model-theoretic tool. The thinness of separating strategies on tree models
will turn out to be an extremely useful property. The fundamental model-theoretic property
of disjunctive formulas is that without loss of generality we may always assume that winning
strategies are separating, provided that we allow ourselves to move to a bisimilar model.

» The proof of this theorem hinges on the semantics of the cover modality.
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Theorem 10.7 Let £ be a disjunctive formula, and let (S,s) be a pointed model. Then the
following are equivalent:

1)S,rlk¢

2) S 1! Ik € for some pointed tree model such that S,r < S, r'.

Proof. (Sketch) We may focus on the direction from left to right, since the opposite direction
is an immediate consequence of bisimulation invariance. So assume that S, s IF &, where £
is disjunctive, and let f be a winning strategy for 3 in the evaluation game £ starting from
position (£, s). Without loss of generality we may assume that f is positional. Let k be the
maximal size of a set ® such that V® is a subformula of &.

» (Define notion of subformula, ensure that A« and V® are direct subformulas of
aed.)

We leave it for the reader to construct a tree model S’ with root 7/, together with a bounded
morphism g : S — S such that every non-root node s’ of §’ has at least k many siblings ¢/
such that g(¢') = g(s').

Our goal will be to supply 3, in the evaluation game of £ on (S',7’), with a separating
winning strategy f’ which is closely linked to f. The key claim in our proof will be the
observation that the gain in branching degree enables her to separate the elements of any set
®. in case the formula (V®, s) is encountered during the play.

Cramm 1 Let s € S and s’ € S be such that g(s') = s. Let V® be a subset of £, and let
Z C ® x R[s] be full on ® and R[s]. Then there is a separating relation Z’ C ® x R'[s] such
that Z’ is full on ® and R'[s] and (p,g(t')) € Z whenever (p,t') € Z'.

PrROOF OF CLAIM Given a successor t € R[s], we define ®; := {p € ® | (¢,t) € Z}; that is,
®; consists of all formulas that 3 connects to ¢t with her choice of the relation Z. Furthermore
let A; := R[s'] N g~1(¢) consist of all successors of s’ that g maps to t; then our assumption
on g states that k < |Ay.

Clearly then we have |®;] < [®| < k& < |A], so that we may assume the existence of a
surjection
Gt Ay — Py,

and since the sets A; partition the set R'[s'], we may easily combine the maps (; into a single
map

¢: R[] — @,

simply by putting ((t') := (gqy(t'). Tt is then straightforward to verify that the relation Z’
given by

Z'={({t',{(t) | ' € R'[s]}

satisfies the requirements of the Claim. <

On the basis of this claim we will be able to provide 3 with a winning strategy in the
evaluation game in &' := £(¢, ).
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CrLAIM 2 Fhas astrategy f’ in &’ which guarantees that every f’-guided play 7 = (1, 8}) -+« (¢¥n, $),)
starting at position (¢1,s]) = (§,77) is such that the sequence 79 = (¢1,9(s})) - - (¢n, 9(s}))
is an f-guided match of £ starting at position (&, 7).

PrOOF OF CLAIM Since we assumed that 3’s strategy f in £ is positional, we will in fact also
be able to provide her with a positional strategy in £’. The definition of f’ is straightforward:

e At a position of the form (¢g V ¢1,5), check whether the position (po V ¢1,9(s’)) is
winning for 3 in £. If so, in £ at position (po V 1, 9(s)), f' picks the same disjunct as
f does at the position (g V ¢1,9(s")). If not, f’ picks ¢; randomly.

e At a position of the form (V®,s’), check whether the position (V®,g(s’)) is winning
for 3in £. If so, suppose that Z C & x R[g(s’)] is the relation picked by f; then 3 picks
some arbitrary but fixed relation Z' C ® x R'[s] as given by Claim 1. If not, f picks
some random legitimate relation Z’ (unless she gets stuck).

The statement of the Claim can then be proved by a straightforward induction on the length
n of the f’-guided play m, with the note that (for the well-definedness and legitimacy of f’)
we also need to show that the last position (¢p,s),) of 7 is such that (¢n, g(s),)) is winning

for fin &. <

Now assume that in £, 3 plays some arbitrary but fixed strategy f’ as given by Claim 2.
It easily follows from the same claim (and the assumption that f is winning for her in &) that
playing f’ she will never get stuck. This means that she wins every finite f’-guided £’-match.

To see that f’ is winning for her in &', consider an arbitary infinite f’-guided match
T = (pn, Sh)n<w starting at (po,sy) = (£,7'). It follows from Claim 2 that the sequence
7 = (pn, 9(8),) )n<w is an f-guided E-match, and thus, won by 3. But then clearly m, which
features exactly the same infinite sequence of formulas as 79, is also winning for her.

Finally it is immediate from its definition and Claim 1 that f’ is separating. QED

Since the cover modality can be expressed in terms of the box and diamond operators, it
is obvious that pDML can be thought of as a fragment of the full language of the p-calculus.
One of the fundamental theorems in the theory of the modal p-calculus is that DML has the
same expressive power as the full language. This equivalence is in fact effective, as stated by
the next theorem.

Theorem 10.8 There are effective procedures transforming an arbitrary formula @ € pML
into an equivalent disjunctive formula, and vice versa. As a corollary, the languages pML,
MLy and uDML all have the same expressive power.

The proof of Theorem 10.7 will be given in a later chapter.

10.2 The small model property

In this section we sketch a proof showing that the modal p-calculus has the small model
property. That is, every satisfiable formula & € uML is satisfiable in a model of size bounded
in the size of &.
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The key tool in our proof of the small model property will be the following satisfiability
game that we may associate with a p-calculus formula. Intuitively the reader may think of
this game as the simultaneous projection on CI(£) of all acceptance games of £, as should
become clear from the proof of Theorem 77 below.

Definition 10.9 Given a formula £ € uML, we define the satisfiability game S(&) as follows.
Its positions are provided by the formulas in the closure of &, and the ownership and admissible
moves of each position can be found in Table 24. The winning condition for infinite matches

is defined as the winning condition of the closure game. <
Position Player | Admissible moves
AVA 3 )
nT e = | {elzp/x}
a e O, o consistent v P
a e ®, o in consistent 3 1%

Table 24: Satisfiability game for Kripke automata

For this game we have the following result.

Theorem 10.10 The following are equivalent, for any disjunctive formula £:
1) & is satisfiable;
2) 3 has a winning strategy in S(§);
3) € is satisfiable in a model based on some subset of CI(§).

Proof. | (1) = (2) | Assume that £ is satisfied by the pointed model (S, s). It is not too hard

to transform a winning strategy f for 3 in the evaluation game £(§,S)Q(&, s) into a winning
strategy for her in the game S(§)Q¢.

(2) = (3)| This is the interesting implication of the theorem. Assume that 3 has some
winning strategy f in the satisfiability game S(£)@Q¢. First of all, sicne S is a parity game,
we may without loss of generality assume that f is positional.

Given the nature of the game, it should be clear that if 3 plays this winning strategy
starting at an arbitrary winning position ¢ € CI(§), then after finitely many moves that are
either moves of 3 or automatic moves (unfoldings) we reach a unique formula f(p) of the
form a e ®. More precisely, we define the map f : Winz(S(€)) — Wina(S(¢)):

JUV®)  ifp=Va

Flo) =1 Fhed/a]) it o =nz
aed ifo=aed.

We leave it for the reader to define that f~'is well-defined.



Lectures on the modal u-calculus 10-7

We will now define a model Sy, the states of which are based on the set of winning positions
for 3 of the form a e ®:

Spi={aedec Cl(§) | ved®c Winz(S(§))}.
The definition of the valuation Vy is rather obvious:
Vi(p) ={ae® e S;|peal,

while for the definition of the relation Ry we involve the map f

Ryfoe @] :={f(p) | ¢ € P}

In the sequel it will be convenient to write

Ty = f(p)
for any formula ¢ € Wing. We think of 7, as the state in Sy that represents ¢.

The implication (2) = (3) follows immediately from the following Claim.
CLAamM 1 Sg,re lF €.

PRrOOF OF CLAIM The basic idea underlying the proof is that in the evaluation game £(Sy, §)
starting at position (r¢,§) 3 can easily maintain the following two condition on a partial
match X = (Si, goi)ogign with (80, QOQ) = (Tg,f):

(i) every position (s;, ;) is such that s; = ry;;

(ii) the sequence (¢;)o<i<n is an f-guided match of S(§).

It is then easy to see that this provides 3 with a winning strategy in £(S¢, §)@(r¢, §), and
this suffices to prove the claim. <

(3) = (1) | Trivial. QED
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Sets and functions We use standard notation for set-theoretic operations such as union,
intersection, product, etc. The power set of a set S is denoted as p(S) or pS, and we sometimes
denote the relative complement operation as ~gX := S\ X. The size or cardinality of a set
S is denoted as |S|.

Let f: A — B be a function from A to B. Given a set X C A, we let f[X] := {f(a) €
B|a€ X} denote the image of X under f, and given Y C B, f~![Y]:={a € A| f(a) € Y}
denotes the preimage of Y. In case f is a bijection, we let f~! denote its inverse. The
composition of two functions f: A — B and g : B — A is denoted as go f or gf, and the set
of functions from A to B will be denoted as either B4 or A — B.

It is well-known that there is a bijective correspondence, often called ‘currying’:

(AxB)—»C =2 A— (B— (),

which associates, with a function f : A x B — C, the map that, for each a € A, yields the
function f, : B — C given by f,(b) := f(a,b).

Relations Given a relation R C A x B, we introduce the following notation. Dom(R) and
Ran(R) denote the domain and range of R, respectively. R~! denotes the converse of R. For
R C Sx 8, R* denotes the reflexive-transitive closure of R, and R the transitive closure. For
X C A, we put R[X]:={be B| (a,b) € R for some a € X}; in case X = {s} is a singleton,
we write R[s] instead of R[{s}]. For Y C B, we will write (R)Y rather than R~![Y], while
[R]Y denotes the set {a € A | b €Y whenever (a,b) € R}. Note that [R]Y = A\ (R)(B\Y).
A relation R on S is acyclic if there are no elements s such that RV ss.

An equivalence relation on a set A is a binary relation that is reflexive, symmetric and
transitive. The equivalence class or cell of an element a € A relative to an equivalence relation
is the set of all elements in A that are linked to a by the relation.

A preorder is a structure (P,C) such that C is a reflexive and transitive relation on P;
given such a relation we will write C for the asymmetric version of C (given by u C v iff u C v
but not v C u) and = for the equivalence relation induced by C (given by u = v iff u C v and
v C u). Cells (that is, equivalence classes) of such a relation will often be called clusters. A
preorder is directed if for any two points u and v there is a w such that v E w and v E w. A
partial order is a preorder C which is antisymmetric, i.e., such that p E ¢ and ¢ = p imply
p = q. Observe that in a poset we have that p C ¢ iff p C ¢ and p # q.

Sequences, lists and streams Given a set C, we define C* as the set of finite lists, words
or sequences over C. We will write ¢ for the empty sequence, and define C* := C* \ {e}
as the set of nonempty words. An infinite word, or stream over C is a map v : w — C
mapping natural numbers to elements of C; the set of these maps is denoted by C*. We
write X := ¥* U X for the set of all sequences over ¥. The concatenation of a (finite)
word u and a (finite or infinite) word v is denoted as u - v or wv. Where k € w U {w}, and
(mi)o<i<w is a sequence of finite sequences, we denote its concatenation as Dy, ., ™ (with
the understanding that this denotes the empty sequence ¢ in case k = 0).
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We use C for the initial segment relation between sequences, and C for the proper (i.e.,
irreflexive) version of this relation. For a nonempty sequence m, first(mw) denotes the first
element of 7. In the case that 7 is finite and nonempty we write last(7) for the last element
of m. Given a stream vy = cpcy ... and two natural numbers i < j, we let ¥[i, j) denote the
finite word CiCit1-..Cj—1-

Graphs and trees A (directed) graph is a pair G = (G, E) consisting of a set G of nodes or
vertices and a binary edge relation E on G. A finite path through such a graph is a nonempty
sequence (8;)o<i<n = S0 - - Sp in G* such that E's;s;4 for all i < n. Similarly, an infinite path
is a sequence (s;)o<i<w = SoS1--- in G¥ such that Es;s;1 for all i <w. A (proper) cycle is
a path sg--- s, such that n > 0, sg = s, and sq, ..., s,—1 are all distinct. A graph is acyclic
if it has no cycles.

A tree is a graph T = (7T, R) which contains a node r, called a root of T, such that
every element t € T is reachable by a unique path from r. (In particular, this means that
T is acyclic, and that the root is unique.) Where s and t are nodes in some tree (T, R), if
(s,t) € R we say that t is a child of s and that s is the parent of t. If (s,t) € RT we call
s an ancestor of t, and t a descendant of s. Distinct nodes with the same parent are called
siblings.

Fact A.1 (Konig’s Lemma) Let G be a finitely branching, acyclic tree. If G is infinite,
then it has an infinite path.

Order and lattices A partial order is a structure P = (P, <) such that < is a reflexive,
transitive and antisymmetric relation on P. Given a partial order P, an element p € P is an
upper bound (lower bound, respectively) of a set X C P if p > z for all z € X (p < x for all
x € X, respectively). If the set of upper bounds of X has a minimum, this element is called
the least upper bound, supremum, or join of X, notation: \/ X. Dually, the greatest lower
bound, infimum, or meet of X, if existing, is denoted as /\ X. Generally, given a statement
S about ordered sets, we obtain its dual statement by replacing each occurrence of < with >
and vice versa. The following principle often reduces our work load by half;

Order Duality Principle If a statement holds for all ordered sets, then so does its dual state-
ment.

A partial order P is called a lattice if every two-element subset of P has both an infimum
and a supremum; in this case, the notation is as follows: p A ¢ := A{p,q}, pV ¢ := V{p,q}.
Such a lattice is bounded if it has a minimum 1 and a maximum T. A partial order P is
called a complete lattice if every subset of P has both an infimum and a supremum. In this
case we abbreviate 1 :=\/ @ and T := )\ &; these are the smallest and largest elements of
C, respectively. A complete lattice will usually be denoted as a structure C = (C,\/, \). Key
examples of complete lattices are full power set algebras: given a set S, it is easy to show
that the structure (p(S),J,[)) is a complete lattice.

Given a family {IP; | i € I} of partial orders, we define the product order J[,.;PP; as the
structure (J[;,c; P;, <) where [],.; P; denotes the cartesian product of the family {P; | i € I},
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and < is given by 7 < 7’ iff 7(i) <; 7'(i) for all i € I. Tt is not difficult to see that the
product of a family of (complete) lattices is again a (complete) lattice, with meets and joins
given coordinatewise. For instance, given a family {C; | i € I'} of complete lattices, and a
subset I' C [],.; C;, it is easy to see that I' has a least upper bound \/T' given by

(\/ 1)@ =\ {r() | yeT},

where the join on the right hand side is taken in C;.

Ordinals A set S is transitive if S C p(5); that is, if every element of S is a subset of S,
or, equivalently, if $” € S’ € S implies that S” € S. An ordinal is a transitive set of which
all elements are also transitive. From this definition it immediately follows that any element
of an ordinal is again an ordinal. We let O denote the class of all ordinals, and use lower case
Greek symbols («, B, 7y, ..., A, ...) to refer to individual ordinals.

The smallest, finite, ordinals are

o
{0} (= {2})

= {0,1}  (={o,{2}})

= {012} (={9,{2},{2,{2}}})

W = O
|

In general, the successor o+ 1 of an ordinal « is the set a U {a}; it is easy to check that
o + 1 is again an ordinal. Ordinals that are not the successor of an ordinal are called limit
ordinals. Thus the smallest limit ordinal is 0; the next one is the first infinite ordinal

w = {0,1,2,3,...}.

But it does not stop here: the successor of w is the ordinal w+1, etc. It is important to realize
that there are in fact too many ordinals to form a set: O is a proper class. As a consequence,
whenever we are dealing with a function f: O — A from O into some set A, we can conclude
that there exist distinct ordinals o # 8 with f(a) = f(8). (Such a function f will also be a
class, not a set.)

We define an ordering relation < on ordinals by:

a< pifacep.

From this definition it follows that « = {#in O | 8 < a} for every ordinal . The relation
< is obviously transitive (if we permit ourselves to apply such notions to relations that are
classes, not sets). It follows from the axioms of ZFC that < is in fact linear (that is, for any
two ordinals a and 3, either a < 3, or a = (3, or 8 < «) and well-founded (that is, every
non-empty set of ordinals has a smallest element).

The fact that < is well-founded allows us to generalize the principle of induction on the
natural numbers to the transfinite case.
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Transfinite Induction Principle In order to prove that all ordinals have a certain property, it
suffices to show that the property is true of an arbitrary ordinal a whenever it is true
of all ordinals 8 < «a.

A proof by transfinite induction typically contains two cases: one for successor ordinals and
one for limit ordinals (the base case of the induction is then a special case of a limit ordi-
nal). Analogous to the transfinite inductive proof principle there is a Transfinite Recursion
Principle according to which we can construct an ordinal-indexed sequence of objects.
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