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Contact Information

Course Website: http://tsinghualogic.net/JRC/
topological-approaches-to-epistemic-logic/

All course material will be posted here! We will also post updates
on the WeChat group.

Lecturer: Aybüke Özgün
email: a.ozgun@uva.nl
website: https://sites.google.com/site/ozgunaybuke/

Teaching Assistants:

▶ Yumin Ji (m2e07@naver.com)

▶ Wenfei Ouyang (oywf23@mails.tsinghua.edu.cn)
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For questions

▶ For practical questions you can use WeChat.

▶ For content related questions, please send an email to
a.ozgun@uva.nl or Yumin or Wenfei, or just ask me after the
lectures.
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Prerequisites

▶ Basic knowledge of modal logic and a reasonable level of
mathematical maturity.
▶ Relational/Kripke semantics for modal logic
▶ Soundness & completeness

▶ No background in topology is necessary: all the required
topological notions will be introduced in the course.

▶ Some knowledge of and interest in (dynamic) epistemic logic
is advantageous but not required.
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Course Structure

▶ 45 min + 5 min break + 45 min + 15 min break + 45 min.

▶ There will be 3 homework and a take-home exam.
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Assessment

▶ each homework: 20% (homeworks in total = 60%)

▶ take-home exam: 40%
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Deadlines

▶ Homework 1: July 16, 13h00

▶ Homework 2: July 17, 13h00

▶ Homework 3: July 18, 13h00

▶ Take-home exam: July 20, midnight
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Homework vs Practise Questions

▶ Homework *is graded* and part of your final grade.

▶ Practise questions are *not* to be submitted or graded.

▶ Practise questions are for you to solve more exercises. They
will be given on slides or in the handout.

▶ Students are encouraged to work on the practise questions
together. Homework should be done individually and
independently.
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Course Materials - General Sources

▶ Any book on introduction to general topology. Some options:

Engelking, R. (1989) General Topology, volume 6.
Heldermann Verlag, Berlin, second edition.

Dugundji, J. (1965) Topology. Allyn and Bacon Series in
Advanced Mathematics. Prentice Hall.

▶ Modal Logic

Blackburn P, Rijke M de, Venema Y. (2001) Modal Logic.
Cambridge University Press.

▶ Modal Logics for Topology

van Benthem, J. and Bezhanishvili, G. (2007). Modal logics
of space. In Handbook of Spatial Logics, pages 217-298.
Springer Verlag.
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Course Materials - More...

▶ A number of research papers and dissertation chapters.

▶ I will use slides during lectures.

▶ Handout with the background information.

All course material will be made available on the course website.
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Tentative Outline

Day 1: Motivation and Topological Preliminaries

Day 2: Topological Semantics for Modal Logic

Day 3: Topological Evidence Models

Day 4: Subset Space Semantics and Topo-Logic

Day 5: Overview of Selected Topics and Summary
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Epistemic Logic

Epistemic Logic is an umbrella term for a variety of (modal)
logics whose main objects of study are knowledge, belief, and
related notions.1

By using a modal language defined recursively as

φ ::= p | ¬φ | φ ∧ φ | φ ∨ φ | φ→ φ | Kφ | Bφ

we can state various properties about the notions of knowledge,
belief, and their relationships.

Note: φ ∨ ψ := ¬(¬φ ∧ ¬ψ) and φ→ ψ := ¬φ ∨ ψ

1Rendsvig, R. and Symons, J., Epistemic Logic, The Stanford Encyclopedia
of Philosophy (Summer 2025 Edition), Edward N. Zalta (ed.).
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Epistemic Logic

Kφ:= the agent knows that φ.

Bφ:= the agent believes that φ.

“I know/believe that I am taller than 1.6m.”
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Epistemic Logic

For example, we can state:

Kφ→ φ

“If the agent knows φ, then φ is true.”

Kφ→ Bφ

“If the agent knows φ, then they believe φ.”

Bφ→ BKφ

“If the agent believes φ, then they believe that they know φ.”
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Epistemic Logic
⋆Which principles are appropriate?

This depends on the particular notions of knowledge and belief one
wants to formally investigate.
▶ knowability in principle given a certain body of evidence

▶ logical commitment given what one knows

▶ ideal knowers, knowledge of average Joe...

⋆ Which models are appropriate?

This depends on the particular notions of knowledge and belief one
wants to formally investigate. This also depends on what aspects
of these notions of knowledge and belief one wants to study.
▶ talk only about knowledge and belief

▶ talk about evidential basis of knowledge and belief

▶ talk about awareness, limits of cognitive and computational

capacities...
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Models of Epistemic Logic: Hintikka Style

The standard approach to epistemic logic formalizes knowledge
and belief based on the relational possible worlds models.

JFJFJFJFJFJFJFJ

(X,R)(X,R)
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Models of Epistemic Logic: Hintikka Style

The standard approach to epistemic logic formalizes knowledge
and belief based on the relational possible worlds models.

JF
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rcs

(X,R, V )

r: It is raining

c: It is cold

s: Kai is shorter than 1.6m

Joey believes that Kai is shorter than 1.6m.
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Normal Epistemic Logics - Hintikka Style

Definition (Relational (Kripke) Frame/Model)

A relational frame is a pair F = (X,R), where

▶ X is a non-empty set of possible worlds, and

▶ R is a binary relation on X, i.e., R ⊆ X ×X.

A relational model is a tuple M = (X,R, V ), where (X,R) is a
Kripke frame and V : Prop → P(X) is a valuation map.

Given a Kripke model M = (X,R, V ) and a possible world x ∈ X,
the pair (M, x) is called a pointed model.
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Normal Epistemic Logics - Hintikka Style

Given a Kripke model M = (X,R, V ):

▶ possible worlds represent the ways the world could be or could
have been. They are complete and consistent. One of the
worlds in X represents the actual world.

▶ R is called the accessibility or indistinguishability relation.

xRy := the agent cannot distinguish y from x (when in x).

▶ V (p) is the set of all possible worlds in the model where p is
true.
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Normal Epistemic Logics - Hintikka Style

Recall the language of epistemic logic LK :2

φ ::= p | ¬φ |φ ∧ φ |Kφ

Definition (Relational Semantics)

Given a Kripke model M = (X,R, V ) and a state x ∈ X, truth of
a formula in the language LK is defined recursively as follows:

M, x |= p iff x ∈ V (p), where p ∈ Prop

M, x |= ¬φ iff not M, x |= φ

M, x |= φ ∧ ψ iff M, x |= φ and M, x |= ψ

M, x |= Kφ iff for all y ∈ X, if xRy then M, y |= φ.

2In the handout in Section 1.1, we use 2 instead of K. This is only a
notational change, the frameworks are the same.
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M, x |= Kφ iff for all y ∈ X, if xRy then M, y |= φ.

In other words: φ is known/believed at w iff it is true at every
possible world that is epistemically indistinguishable from w.

2In the handout in Section 1.1, we use 2 instead of K. This is only a
notational change, the frameworks are the same.
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M, x |= φ ∧ ψ iff M, x |= φ and M, x |= ψ

M, x |= Kφ iff for all y ∈ X, if xRy then M, y |= φ.

Knowledge/Belief = truth in all epistemically possible worlds

2In the handout in Section 1.1, we use 2 instead of K. This is only a
notational change, the frameworks are the same.
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JFJFJFJFJFJFJFJ
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Hintikka Style Epistemic Logic

Pros

(+) relatively easy

(+) well-developed model theory

(+) works well for, e.g., derivative attitudes such as
▶ what one ought to know given what one knows,
▶ what one can potentially derive from one’s given body of

information.
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Hintikka Style Epistemic Logic

Cons

(–) not rich enough to talk about evidence (and further evidence
acquisition)

⋆ How to represent evidence?

⋆ How does evidence relate to knowledge, belief and
justification?

⋆ How to represent learning after having acquired further
evidence?

(–) models idealized agents (without cognitive, computational,
and conceptual limits)

⋆ How to model non-ideal but logically competent reasoners?
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Hintikka Style Epistemic Logic

Cons

(–) not rich enough to talk about evidence (and further evidence
acquisition)

⋆ How to represent evidence?

⋆ How does evidence relate to knowledge, belief and
justification?

⋆ How to represent learning after having acquired further
evidence?

(–) models idealized agents (without cognitive, computational,
and conceptual limits) ⇒ Another course!

⋆ How to model non-ideal but logically competent reasoners?
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Epistemic Logic vs. Topology

Epistemic Logic is an umbrella term for a variety of (modal)
logics whose main objects of study are knowledge, belief, and
related notions.

Topology is the abstract mathematical study of geometric
structures that are unaltered by elastic change of shapes and sizes.

⋆ What can Topology do for Epistemic Logic? A lot...
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Epistemic Logic & Topology

⋆ What can Topology do for Epistemic Logic? A lot...

measurement/observation, argument, justification, belief, knowledge...
≈

open, close, dense, nowhere dense sets, interior, closure, derivative...

We can employ topological tools to:

▶ represent infallible, factive, false, misleading evidence,

▶ distinguish current evidence from potential evidence,

▶ study knowledge, knowability, and belief.

▶ formalize verifiability, falsifiability, and inductive learnability...
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Topology as Information Structures

Joey believes that Kai is shorter than 1.6m, because Joey
has taken many measurements with different devices: none
of them contradicts Joey’s claim and some support it.

Short = (0, 1.6)
m1 = (1.45, 1.55),
m2 = (1.35, 1.50),
m3 = (1.45, 1.75).

0 1.35 1.40 1.45
. . .

1.50 1.55 1.60 1.65 1.70 1.75 ∞. . .

S = (0, 1.60)

m1m2 m3
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This situation can easily be formalized on the real number line R.
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Topology as Information Structures
Joey is an evolutionary biologist, investigating an animal
fossil. He receives pieces of evidence from three sources
(from colleagues or experiments):

e1: it is a mammal
e2: it can swim
e3: it is a non-flying bird

crocodile

ape

hippodolphin giraffe

penguin

kakapo

tortoise

How can Joey form consistent beliefs based on their evidence?
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Topological Spaces

A topological space is a pair (X, τ), where X is a nonempty set
and τ ⊆ P(X) is a family of subsets of X such that

1. ∅ ∈ τ and X ∈ τ ;

2. τ is closed under arbitrary unions:
for any subset A ⊆ τ , the union

⋃
A ∈ τ ;

3. τ is closed under finite intersection:
if U, V ∈ τ then U ∩ V ∈ τ .

Example: X = {1, 2, 3} and τ = {∅, {1}, {1, 2}, {1, 2, 3}}.

Non-example: X = {1, 2, 3} and τ = {∅, {1}, {2}, {1, 2, 3}}

Why?
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Topological Spaces - Terminology

▶ (X, τ) is the topological space,

▶ The set X is called the space,

▶ The family τ is called a topology or a topology on X,

▶ The elements of τ are called open sets or opens.

▶ A set C ⊆ X is called a closed set if it is the complement of
an open set, i.e., it is of the form X \ U for some U ∈ τ .

Notation: We let τ = {X \ U | U ∈ τ} denote the family of
all closed sets of (X, τ).

▶ A set A ⊆ X is called clopen if it is both closed and open.
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Examples

1. {∅, X} is called the trivial topology on X.

2. The power set P(X) of X constitutes a topology on X called
the discrete topology.

3. On R, let B = {(a, c) | a, c ∈ R and a < c}. Then, for
O ⊆ R, O ∈ τ iff there exists some indexing set I such that
O =

⋃
i∈I bi where all bi ∈ B.

τ is called the standard or natural topology on R.

4. On N, let τ = {{m | m ≥ n} | for some n ∈ N} ∪ {∅}. This
is an Alexandroff Topology on N: the intersection of any
family of opens is an open set.

Can you think of a set that is a clopen in all topologies?
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Neighborhoods, interior points, limit points

Given a topological space (X, τ):

A(n) (open) neighborhood of a point x ∈ X is an open set U ∈ τ
with x ∈ U .

An interior point of a set A ⊆ X is a point x ∈ X s.t. there exists
a neighborhood U of x with U ⊆ A.

44 / 56



Interior and closure
Given a topological space (X, τ) and A ⊆ X:

The interior of A is the set of all its interior points:

Int(A) = {x ∈ X | ∃U ∈ τ(x ∈ U ⊆ A)}

Fact 1. Int(A) is an open set and is the largest open subset of A,
that is

Int(A) =
⋃

{U ∈ τ | U ⊆ A}.

The closure of A is

Cl(A) = {x ∈ X | ∀U ∈ τ(x ∈ U ⇒ U ∩A ̸= ∅)}

Fact 2. Cl(A) is the smallest closed set containing A, that is

Cl(A) =
⋂

{C ∈ τ | A ⊆ C},

Fact 3. Cl(A) = X \ Int(X \A) for all A ⊆ X. (Prove this!)
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Derivative and co-derivative

A limit point of a set A is a point x ∈ X s.t. every neighborhood
U of x contains a point y ∈ A with y ̸= x.

The (Cantor) derivative of A is the set of its limit points:

d(A) = {x ∈ X | ∀U ∈ τ(x ∈ U ⇒ (U \ {x}) ∩A ̸= ∅)}

The co-derivative of A

t(A) = X \ d(X \A) = {x ∈ X | ∃U ∈ τ(x ∈ U ⊆ A ∪ {x})}

Fact 4. Cl(A) = A ∪ d(A) for all A ⊆ X. (Prove this!)

An isolated point of A is a point x ∈ A \ d(A); in other words, a
point in A that is not a limit point of A.

46 / 56



Derivative and co-derivative

A limit point of a set A is a point x ∈ X s.t. every neighborhood
U of x contains a point y ∈ A with y ̸= x.

The (Cantor) derivative of A is the set of its limit points:

d(A) = {x ∈ X | ∀U ∈ τ(x ∈ U ⇒ (U \ {x}) ∩A ̸= ∅)}

The co-derivative of A

t(A) = X \ d(X \A) = {x ∈ X | ∃U ∈ τ(x ∈ U ⊆ A ∪ {x})}

Fact 4. Cl(A) = A ∪ d(A) for all A ⊆ X. (Prove this!)

An isolated point of A is a point x ∈ A \ d(A); in other words, a
point in A that is not a limit point of A.

46 / 56



Derivative and co-derivative

A limit point of a set A is a point x ∈ X s.t. every neighborhood
U of x contains a point y ∈ A with y ̸= x.

The (Cantor) derivative of A is the set of its limit points:

d(A) = {x ∈ X | ∀U ∈ τ(x ∈ U ⇒ (U \ {x}) ∩A ̸= ∅)}

The co-derivative of A

t(A) = X \ d(X \A) = {x ∈ X | ∃U ∈ τ(x ∈ U ⊆ A ∪ {x})}

Fact 4. Cl(A) = A ∪ d(A) for all A ⊆ X. (Prove this!)

An isolated point of A is a point x ∈ A \ d(A); in other words, a
point in A that is not a limit point of A.

46 / 56



Derivative and co-derivative

A limit point of a set A is a point x ∈ X s.t. every neighborhood
U of x contains a point y ∈ A with y ̸= x.

The (Cantor) derivative of A is the set of its limit points:

d(A) = {x ∈ X | ∀U ∈ τ(x ∈ U ⇒ (U \ {x}) ∩A ̸= ∅)}

The co-derivative of A

t(A) = X \ d(X \A) = {x ∈ X | ∃U ∈ τ(x ∈ U ⊆ A ∪ {x})}

Fact 4. Cl(A) = A ∪ d(A) for all A ⊆ X. (Prove this!)

An isolated point of A is a point x ∈ A \ d(A); in other words, a
point in A that is not a limit point of A.

46 / 56



Alternative Notations

A for closure Cl(A),

A′ for derivative d(A).
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Examples

1. In the standard topology on R, Int([0, 1]) = (0, 1) and
Cl((3, 4)) = [3, 4].

2. In the standard topology on R, d((0, 1)) = [0, 1].

3. In the standard topology on R, d({a}) = ∅ for all a ∈ R.

4. In the standard topology on R, every a ∈ R is an isolated
point of {a}.

5. In the discrete topology on R and any A ⊆ R, Cl(A) = A
and Int(A) = A for any set A (Prove this!)

6. In any discrete topology (X,P(X)), d(A) = ∅ for all A ⊆ X
(Prove this!)
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Properties of Int and Cl

The closure operator Cl of any topological space (X, τ) satisfies
the so-called Kuratowski properties/axioms:

1. Cl(∅) = ∅
2. A ⊆ Cl(A) for all A ⊆ X

3. Cl(A ∪B) = Cl(A) ∪ Cl(B) for all A,B ⊆ X

4. Cl(Cl(A)) = Cl(A) for all A ⊆ X

A Kuratowski closure operator is an alternative to the standard
definition of topology:

for any Kuratowski closure operator Cl : P(X) → P(X),
{X \A | A = Cl(A)} defines a topology on X.

Prove this!
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Properties of Int and Cl

The interior satisfies the dual properties:

1. Int(X) = X

2. Int(A) ⊆ A

3. Int(A ∩B) = Int(A) ∩ Int(B) for all A,B ⊆ X

4. Int(Int(A)) = Int(A) for all A ⊆ X

A “Kuratowski” interior operator is an alternative to the standard
definition of topology:

for any operator Int : P(X) → P(X) satisfying the above
properties, {A ∈ P(X) | A = Int(A)} defines a topology on X.

Prove this!

50 / 56



Properties of Int and Cl

The interior satisfies the dual properties:

1. Int(X) = X

2. Int(A) ⊆ A

3. Int(A ∩B) = Int(A) ∩ Int(B) for all A,B ⊆ X

4. Int(Int(A)) = Int(A) for all A ⊆ X

A “Kuratowski” interior operator is an alternative to the standard
definition of topology:

for any operator Int : P(X) → P(X) satisfying the above
properties, {A ∈ P(X) | A = Int(A)} defines a topology on X.

Prove this!

50 / 56



Epistemic interpretations

A

U

X

x

Think of U as a piece of evidence that (imperfectly) indicates the
true state of the world: the points in U are precisely those that are
compatible with the evidence.

E.g., U might be the result of some measurement with error.

2Special thanks to Adam Bjorndahl for this slide.
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Epistemic interpretations

A

U

X

x

Such a “measurement” U is not precise enough to tell you the
exact state of the world.

However, it can still be informative: in the above, it is precise
enough to indicate that A holds.

2Special thanks to Adam Bjorndahl for this slide.
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Topology as Information Structures

Joey believes that Kai is shorter than 1.6m, because they
have taken many measurements with different devices: none
of them contradicts their claim and some support it.

Short = (0, 1.6)
m1 = (1.45, 1.55),
m2 = (1.35, 1.50),
m3 = (1.45, 1.75).

0 1.35 1.40 1.45
. . .

1.50 1.55 1.60 1.65 1.70 1.75 ∞. . .

S = (0, 1.60)

m1m2 m3

This situation can easily be formalized on the real number line R.
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Epistemic interpretations

Open sets as verifiable properties: one for which there is evidence,
whenever it is true.

Closed sets as falsifiable property: one against which there is
evidence, whenever it is false.

Read Int(A) as ‘A is known (or knowable)’ based on evidence.

Read Cl(A) as ‘A is epistemically possible’ (compatible with all
evidence).
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Epistemic interpretations

Int(X) = X Tautologies are known/knowable

Int(A) ⊆ A Factivity of Knowledge/ability

Int(A ∩B) = Int(A) ∩ Int(B) Dist. over Conjunction

Int(Int(A)) = Int(A) Positive Introspection
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