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Subbasis, Basis, Generated Topology

A subbasis is a family Σ ⊆ P(X) of subsets of a set X s.t. for
every point x ∈ X there exists some set O ∈ Σ with x ∈ O; i.e.⋃
Σ = X.

A basis (or base) B is a subbasis satisfying in addition

∀B,B′ ∈ B ∀x ∈ B ∩B′ ∃B′′ ∈ B s.t. x ∈ B′′ ⊆ B ∩B′.

Given a subbasis Σ ⊆ P(X), the topology τΣ generated by Σ on
X is the smallest topology (on X) that includes Σ.

τΣ consists of:

▶ ∅,
▶ X,

▶ Finite intersections of elements of Σ,

▶ Arbitrary unions of the finite intersections.
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Subbasis, Basis, Generated Topology

Subbasis Basis Topology
finite intersections arbitrary unions

In general, for a subbasis Σ, we have:

τΣ = {arbitrary unions of finite intersections of sets O ∈ Σ}

For a basis B, we have:

τB = {arbitrary unions of sets B ∈ B}
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Subbasis: Examples

Example 1

For X = {0, 1, 2, 3}, let Σ = {{0, 1}, {1, 2}, {1, 2, 3}}.

What is the topology generated by Σ?

Answer: The topology generated by Σ is
{∅, {1}, {0, 1}, {1, 2}, {0, 1, 2}, {1, 2, 3}, {0, 1, 2, 3}}.

Example 2

The set
{(−∞, a) | a ∈ Q} ∪ {(b,∞) | b ∈ Q}

is a subbasis for the standard topology on R.

Is this also a basis for the standard topology on R? Justify your
answer!
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Basis: Examples

Example 3

▶ For the standard topology on R, {(a, b) | a < b, a, b ∈ R} is a
basis.

▶ For the standard topology on R, {(a, b) | a < b, a, b ∈ Q} is
also a basis (it is a countable basis).

▶ For the discrete topology on R, {{x} | x ∈ R} is a basis.
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Recall: Syntax of basic modal logic: LK

φ ::= p | φ ∧ φ | ¬φ | Kφ

where p ∈ Prop, a countable (or finite) set of propositional
variables.

Note 1: We employ K̂φ as an abbreviation for ¬K¬φ.

Note 2: φ ∨ ψ := ¬(¬φ ∧ ¬ψ), φ→ ψ := ¬φ ∨ ψ, and
φ↔ ψ := (φ→ ψ) ∧ (ψ → φ).
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Interior semantics

Definition 4 (Topo-Model)

A topo-model is a tuple X = (X, τ, V ), where (X, τ) is a
topological space and V : Prop→ P(X) is a valuation function,
assigning each propositional variable to a set of points in X.

Definition 5 (Interior semantics for LK)

Given a topo-model X=(X, τ, V ) and a state x ∈ X, truth of a
formula in the langauge LK is defined recursively as follows:

X , x |= p iff x ∈ V (p)

X , x |= ¬φ iff not X , x |= φ

X , x |= φ ∧ ψ iff X , x |= φ and X , x |= ψ

X , x |= Kφ iff (∃U ∈ τ)(x ∈ U and ∀y ∈ U, X , y |= φ)
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Semantic clauses for ∨, →, and ↔

Note 2: φ ∨ ψ := ¬(¬φ ∧ ¬ψ), φ→ ψ := ¬φ ∨ ψ, and
φ↔ ψ := (φ→ ψ) ∧ (ψ → φ).

X , x |= φ ∨ ψ iff X , x |= φ or X , x |= ψ

X , x |= φ→ ψ iff (if X , x |= φ then X , x |= ψ)

X , x |= φ↔ ψ iff (X , x |= φ iff X , x |= ψ)
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Interior semantics ctd.

X , x |= Kφ iff (∃U ∈ τ)(x ∈ U and ∀y ∈ U,X , y |= φ)

We define the truth set of a formula as the set of points where the
formula holds:

[[φ]]X = {x ∈ X | X , x |= φ}
For Kφ:

x ∈ [[Kφ]]X iff (∃U ∈ τ)(x ∈ U and U ⊆ [[φ]]X )

[[Kφ]]X = Int([[φ]]X )

For K̂φ:

x ∈ [[K̂φ]]X iff (∀U ∈ τ)(x ∈ U then U ∩ [[φ]]X ̸= ∅)

[[K̂φ]]X = Cl([[φ]]X )
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Truth and Validity

We say

▶ φ is true at point x (in model X ) if X , x |= φ.

▶ φ is valid in the topo-model X , denoted by X |= φ, if
X , x |= φ for all x ∈ X.

▶ φ is (topologically) valid if X |= φ for all topo-models X .

▶ φ is (topologically) satisfiable if ̸|= ¬φ; i.e. if φ is true at
some point in some topo-model X .

For a set of formulas Φ

▶ Φ is satisfiable if there is a point in some topo-model that
makes all sentences in Φ true.
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Epistemic interpretation

This semantics can be interpreted as an evidence-based conception
of knowledge.

Points x ∈ X: all the possibilities (“possible worlds”, states,
descriptions of the world) that are consistent with an agent’s
information.

EPISTEMOLOGY TOPOLOGY

Directly observable Subbasis (Σ)

basic evidence

Directly observable Basis (B)
combined evidence

Verifiable evidence Open Sets (τ)

Factive evidence at x Open neighbourhood U ∋ x
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Epistemic interpretation

In fact, it would be natural to require the family B of directly
observable evidence to have stronger closure properties:

X ∈ B

(tautologies are directly observable), and

A,B ∈ B ⇒ A ∩B ∈ B

(we can cumulate observations).

These properties imply that B is a basis.
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Epistemic interpretation

x ∈ [[Kφ]]X iff (∃U ∈ τ)(x ∈ U and U ⊆ [[φ]]X )

iff (∃U ∈ B)(x ∈ U and U ⊆ [[φ]]X )

In words:
φ is “known” or “knowable”

iff
the agent has correct evidence for φ

iff
there is some some directly observable true evidence supporting φ.

15 / 54



Epistemic interpretation

x ∈ [[Kφ]]X iff (∃U ∈ τ)(x ∈ U and U ⊆ [[φ]]X )

iff (∃U ∈ B)(x ∈ U and U ⊆ [[φ]]X )

In words:
φ is “known” or “knowable”

iff
the agent has correct evidence for φ

iff
there is some some directly observable true evidence supporting φ.

15 / 54



Epistemic interpretation

x ∈ [[Kφ]]X iff (∃U ∈ τ)(x ∈ U and U ⊆ [[φ]]X )

iff (∃U ∈ B)(x ∈ U and U ⊆ [[φ]]X )

In words:
φ is “known” or “knowable”

iff
the agent has correct evidence for φ

iff
there is some some directly observable true evidence supporting φ.

15 / 54



Intermezzo: Link to the Relational Semantics

There is a tight link between the reflexive and transitive Kripke
frames (preordered sets) and Alexandroff spaces.
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Alexandroff Topologies

A topological space (X, τ) is an Alexandroff space if τ is closed
under arbitrary intersections, i.e.,

⋂
A ∈ τ for any A ⊆ τ .

Example 6

On N, let τ = {{m | m ≥ n} | for some n ∈ N} ∪ {∅}.

. . . . . . . . .1 2 3 4

Non-Example 1

On N, let τ = {{m | m ≥ n} ∪ {♠} | for some n ∈ N} ∪ {∅}.

. . . . . .1 2 3 4 ♠
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From preorders to topologies

Let (X,R) be a preordered set. Then, the set

τR = {A | A is a upward closed set1 of (X,R)}

is a topological space. We call τR is the upset topology on the
preordered set (X,R).

Fact 1. Every upset topology is an Alexandroff topology.

1A is called an upward-closed set (or, in short, up-set) of (X,R) if for each
x, y ∈ X, xRy and x ∈ A imply y ∈ A.
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From topologies to preorders
Specialization Preorder - ⊑

Give a topological space (X, τ) and two points x, y ∈ X, we say
that x is a specialization of y, x ⊑τ y, if every (open)
neighborhood of x is also a neighborhood of y:

x ⊑τ y iff ∀U ∈ τ(x ∈ U ⇒ y ∈ U).

If we are given a subbasis Σ for the topology τ , then it is easy to
see that we also have:

x ⊑τ y iff ∀U ∈ Σ(x ∈ U ⇒ y ∈ U).
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From topologies to preorders
Specialization Preorder - ⊑

Equivalently:

x ⊑τ y iff x is contained in every closed set containing y.

Here are some more equivalent characterizations:

x ⊑τ y iff x ∈ Cl({y}) iff Cl({x}) ⊆ Cl({y}).

⊑τ is a preorder - reflexive and transitive relation - on X, called
the specialization preorder.

Fact 2. Every open set is upwards-closed wrt the specialization
preorder.
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Alexandroff Spaces are preordered sets!

Given a preordered set (X,R),

R =⊑τR .

Given a topological space (X, τ),

τ ⊆ τ⊑τ .

(X, τ) is an Alexandroff space iff τ = τ⊑τ .
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Link to the Relational Semantics - A special case

When the underlying topology is Alexandroff given by the upsets
wrt to a given preorder R on X, that is, τR, our topological
semantics coincides with the standard relational semantics.

Recall:
An S4-Kripke frame is just a pair (X,R), consisting of a set X of
possible worlds and a preorder (=reflexive and transitive relation)
R on X.

An S4-Kripke model is a triplet M = (X,R, V ), where (X,R) is
an S4 frame and V : Prop→ P(W ) is a valuation.
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Recall: Relational semantics

Given a relational model (X,R, V ) and x ∈ X, the relational
semantics for LK is defined recursively as

X , x |= p iff x ∈ V (p)

X , x |= φ ∧ ψ iff X , x |= φ and X , x |= ψ

X , x |= ¬φ iff X , x ̸|= φ

X , x |= Kφ iff (∀y ∈ X)(xRy then X , y |= φ)
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Correspondence between relational and topological models

For an S4-Kripke model M = (X,R, V ), let B(M) = (X, τR, V )
- a topo-model.

For Alexandroff model X = (X, τ, V ), let A(X ) = (X,⊑τ , V ) - an
S4-Kripke model.
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Correspondence between relational and topological models

Proposition 7

For all φ ∈ LK ,

1. for any S4-Kripke model M = (X,R, V ) and x ∈ X,

M, x |= φ iff B(M), x |= φ;

2. for any Alexandroff model X = (X, τ, V ) and x ∈ X,

X , x |= φ iff A(X ), x |= φ.
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Soundness and Completeness Results

S4K axioms Kuratowski axioms

(KK) K(φ∧ψ) ↔ (Kφ∧Kψ) Int(A ∩B) = Int(A)∩ Int(B)

(TK) Kφ→ φ Int(A) ⊆ A

(4K) Kφ→ KKφ Int(A) ⊆ Int(Int(A))

(Nec) from φ, infer Kφ Int(X) = X

Table: S4K vs. Kuratowski axioms

Theorem 8 ([McKinsey and Tarski, 1944])

S4K is sound and complete with respect to the class of all
topological spaces (under the interior semantics).
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Soundness and Completeness Results

Proposition 9 ([van Benthem and Bezhanishvili, 2007])

Every normal extension of S4K (over the language LK) that is
complete with respect to the standard relational semantics is also
complete with respect to the interior semantics.

Proof.
Let LK be a normal extension of S4K that is complete with respect
to the relational semantics and φ ∈ LK such that φ ̸∈ LK . Then,
by relational completeness of LK , there exists a relational model
M = (X,R, V ) and x ∈ X such that M, x ̸|= φ. Since LK
extends the system S4K , which is complete with respect to
reflexive and transitive Kripke models, R can be assumed to be at
least reflexive and transitive. Then we obtain B(M), x ̸|= φ (by
Proposition 7).
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Soundness and Completeness Results

Definition 10
A topological space (X, τ) is called extremally disconnected if the
closure of each open subset of X is open.

Theorem 11 ([Gabelaia, 2001])

S4.2K is sound and complete with respect to the class of
extremally disconnected topological spaces under the interior
semantics.
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Soundness and Completeness Results

Definition 12
A topological space (X, τ) is called hereditarily extremally
disconnected if every subspace of (X, τ) is extremally disconnected.

Theorem 13 ([Bezhanishvili et al., 2015])

S4.3K is sound and complete with respect to the class of
hereditarily extremally disconnected topological spaces under the
interior semantics.
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The Motivation behind Knowledge as Interior

According to the interior semantics, given a topo-model
X = (X, τ, V ), we have

[[Kφ]] = Int([[φ]])

and
[[K̂φ]] = Cl([[φ]])

1. The interior semantics is naturally epistemic and extends the
relational semantics.

2. We can talk about evidence: evidence as open sets.
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The Motivation behind Knowledge as Interior
The interior semantics is naturally epistemic and extends the relational semantics.

Recall:

S4K axioms Kuratowski axioms

(KK) K(φ∧ψ) ↔ (Kφ∧Kψ) Int(A ∩B) = Int(A)∩ Int(B)

(TK) Kφ→ φ Int(A) ⊆ A

(4K) Kφ→ KKφ Int(A) ⊆ Int(Int(A))

(Nec) from φ, infer Kφ Int(X) = X

Table: S4K vs. Kuratowski axioms

Recall Theorem 8:
S4K is sound and complete with respect to the class of all
topological spaces (under the interior semantics).
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The Motivation behind Knowledge as Interior
The interior semantics is naturally epistemic and extends the relational semantics.

So, in its most general form, topologically modelled knowledge (as
the interior operator) is Factive,

Kφ→ φ,

and Positively Introspective,

Kφ→ KKφ,

however, it does not necessarily possess stronger properties.

▶ The interior semantics is naturally epistemic since the most
general class of spaces constitutes the class of models of
arguably the weakest, yet philosophically the most accepted
normal system S4K .

Q. Is this a limitation (especially compared to the relational
semantics)? Not really!
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The Motivation behind Knowledge as Interior
The interior semantics is naturally epistemic and extends the relational semantics.

Recall:

S4K The logic of all topological spaces

S4.2K The logic of extremally disconnected topological spaces

S4.3K The logic of hereditarily ext. disc. topological spaces

S5K The logic of topological spaces whose every closed subset

is open

Table: Logics of LK under the interior semantics.

▶ Topological spaces provide sufficiently flexible structures to
study knowledge of different strength.

▶ Moreover, the interior semantics generalizes the standard
Kripke semantics for normal extensions of S4K .
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Further extensions
▶ Multi-agents

van Benthem, J., Bezhanishvilli, G., ten Cate, B., & Sarenac, D. (2005). Modal

logics for products of topologies. Studia Logica, 84(3)(369-392).

▶ Common Knowledge
Barwise, J. (1988). Three views of common knowledge. In Proceedings of the

2nd Conference on Theoretical Aspects of Reasoning about Knolwedge, (pp.

365-379).

van Benthem, J., & Sarenac, D. (2004). The geometry of knowledge. In

Aspects of universal Logic, vol. 17, (pp. 1-31).

▶ Logics of learning and observational effort - Subset Space
Logics
Moss, L. S., & Parikh, R. (1992). Topological reasoning and the logic of

knowledge. In Proceedings of 4th TARK, (pp. 95-105).

▶ Topological versions of dynamic epistemic logic
Zvesper, J. (2010). Playing with Information. Ph.D. thesis, University of

Amsterdam.
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A few more preliminary notions

The Interior Semantics for “Knowledge”

Topological Semantics for Belief
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Belief on Topological Spaces?

Q. What is the relationship between belief, evidence, and
knowledge?

Q. Can topological semantics also account for notions of
(evidentially) justified belief that work well with the previous
notion of knowledge?
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Interaction Between Knowledge and Belief

Platonic equation:

knowledge = justified true belief (JTB)

+ (??)

“an agent knows φ iff φ is true, they believe that it is true and
they are justified in believing that φ.”

This interpretation was shattered by Gettier’s famous
counterexamples [Gettier, 1963].
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A Gettier-Type Counterexample

Suppose that I have strong evidence for the proposition:

(a) Sophia owns a Ford.

My evidence might be that Sophia has at all times in the past, as
far as I remember, owned a car, and always a Ford, and that she
has just offered me a ride while driving a Ford. (Unbeknownst to
me, it was in fact a rental car.)

I have another friend, Fernando, and I had no idea about where
Fernando was last week. On the basis of (a), I believe that

(b) Sophia owns a Ford or Fernando was in Beijing last week.

I am thereby justified in believing (b). As it turns out,
unbeknownst to me, Fernando was indeed in Beijing last week.
Therefore, my justified belief in (b) is true.

Is this really knowledge OR mere coincidence?
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Solutions to Gettier’s Challenge

The solutions can be classified in two categories:

(1) the ones that start with the weakest notion (true justified, or
justifiable, belief) and adding some “missing ingredient” to the
Platonic equation, to obtain “knowledge”

JTB + X;

(2) the ones that start from a chosen notion of knowledge, and
weaken it to obtain a “good” notion of belief.
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Belief on Topological Spaces?

Q. What is the relationship between belief, evidence, and
knowledge?

Q. Can topological semantics also account for notions of
(evidentially) justified belief that work well with the previous
notion of knowledge?
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Some earlier proposals

▶ Belief as the co-derivative

Steinsvold, C. (2006). Topological models of belief logics. PhD thesis, City

University of New York.

▶ Belief as the closure of the interior

Baltag, A., Bezhanishvili, N., Özgün, A., and Smets, S. (2019) A Topological

Approach to Full Belief. Journal of Philosophical Logic, pp. 205-244.

We focus on:

▶ Belief as dense interior

Baltag, A., Bezhanishvili, N., Özgün, A., and Smets, S. (2020) Justifed belief,

knowledge, and the topology of evidence. Synthese 200, 512.

Özgün, A (2017). Evidence in Epistemic Logic: A topological perspective. PhD

thesis. Université de Lorraine & University of Amsterdam - Chapter 5.
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Steinsvold’s Belief as the co-derivative

Recall: Given a topological space (X, τ) and A ⊆ X

x ∈ d(A) iff ∀U ∈ τ(x ∈ U implies A ∩ (U \ {x}) ̸= ∅)

x ∈ t(A) iff ∃U ∈ τ(x ∈ U and U \ {x} ⊆ A)

Note: t(A) = X \ (d(X \A))

[Steinsvold, 2006] proposes a topological semantics for belief in
terms of the co-derived set operator: given a topo-model
X = (X, τ, V ):

x ∈ [[Bφ]] iff ∃U ∈ τ(x ∈ U and U \ {x} ⊆ [[φ]])

x ∈ [[Kφ]] iff ∃U ∈ τ(x ∈ U and U ⊆ [[φ]])

42 / 54



Steinsvold’s Belief as the co-derivative

Recall: Given a topological space (X, τ) and A ⊆ X

x ∈ d(A) iff ∀U ∈ τ(x ∈ U implies A ∩ (U \ {x}) ̸= ∅)

x ∈ t(A) iff ∃U ∈ τ(x ∈ U and U \ {x} ⊆ A)

Note: t(A) = X \ (d(X \A))

[Steinsvold, 2006] proposes a topological semantics for belief in
terms of the co-derived set operator:

given a topo-model
X = (X, τ, V ):

x ∈ [[Bφ]] iff ∃U ∈ τ(x ∈ U and U \ {x} ⊆ [[φ]])

x ∈ [[Kφ]] iff ∃U ∈ τ(x ∈ U and U ⊆ [[φ]])

42 / 54



Steinsvold’s Belief as the co-derivative

Recall: Given a topological space (X, τ) and A ⊆ X

x ∈ d(A) iff ∀U ∈ τ(x ∈ U implies A ∩ (U \ {x}) ̸= ∅)

x ∈ t(A) iff ∃U ∈ τ(x ∈ U and U \ {x} ⊆ A)

Note: t(A) = X \ (d(X \A))

[Steinsvold, 2006] proposes a topological semantics for belief in
terms of the co-derived set operator: given a topo-model
X = (X, τ, V ):

x ∈ [[Bφ]] iff ∃U ∈ τ(x ∈ U and U \ {x} ⊆ [[φ]])

x ∈ [[Kφ]] iff ∃U ∈ τ(x ∈ U and U ⊆ [[φ]])

42 / 54



Steinsvold’s Belief as the co-derivative

Recall: Given a topological space (X, τ) and A ⊆ X

x ∈ d(A) iff ∀U ∈ τ(x ∈ U implies A ∩ (U \ {x}) ̸= ∅)

x ∈ t(A) iff ∃U ∈ τ(x ∈ U and U \ {x} ⊆ A)

Note: t(A) = X \ (d(X \A))

[Steinsvold, 2006] proposes a topological semantics for belief in
terms of the co-derived set operator: given a topo-model
X = (X, τ, V ):

x ∈ [[Bφ]] iff ∃U ∈ τ(x ∈ U and U \ {x} ⊆ [[φ]])

x ∈ [[Kφ]] iff ∃U ∈ τ(x ∈ U and U ⊆ [[φ]])

42 / 54



Steinsvold’s Belief as the co-derivative

x ∈ [[Bφ]] iff ∃U ∈ τ(x ∈ U and U \ {x} ⊆ [[φ]])

One of the crucial properties that distinguishes knowledge from
belief is its factivity. Steinsvold’s belief is not necessarily factive.

Downsides:

- it entails the necessity of error:
there is at least one false belief in all worlds of every
topological model.

± KD45B is the logic of DSO-spaces2.

- it can easily be “Gettierized”:

Kφ := Bφ ∧ φ

2dense-in-itself space (i.e., a space without singleton opens) in which every
derived set d(A) is open.
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Belief as the closure of the interior - Motivation

We are now in a very unusual situation: belief, rather than
knowledge, is the main mystery, in the topological semantics.

Q. Given the interior-based topological semantics for knowledge,
how can we construct a topological semantics for belief which sits
well with the knowledge as interior, thus can help us understand
the relation between knowledge and belief?
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Belief as the closure of the interior - Stalnaker’s system

Stalnaker (2006) has proposed a logic intended to capture the
relationship between knowledge and belief, where belief is
interpreted in the strong sense of subjective certainty.

(LK,B) φ ::= p | ¬φ |φ ∧ ψ |Kφ |Bφ

This logic extends the classic S4 system for knowledge...

(KK) K(φ→ ψ) → (Kφ→ Kψ) Distribution

(TK) Kφ→ φ Factivity

(4K) Kφ→ KKφ Positive introspection

(NecK) from φ infer Kφ Necessitation

Table: S4K axioms for knowledge
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Belief as the closure of the interior - Stalnaker’s system

...with the following additional axioms.

(DB) Bφ→ ¬B¬φ Consistency of belief

(sPI) Bφ→ KBφ Strong positive introspection

(sNI) ¬Bφ→ K¬Bφ Strong negative introspection

(KB) Kφ→ Bφ Knowledge implies belief

(FB) Bφ→ BKφ Full belief

Table: Stalnaker’s additional axioms
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...with the following additional axioms.

(DB) Bφ→ ¬B¬φ Consistency of belief

(sPI) Bφ→ KBφ Strong positive introspection

(sNI) ¬Bφ→ K¬Bφ Strong negative introspection

(KB) Kφ→ Bφ Knowledge implies belief

(FB) Bφ→ BKφ Full belief

Table: Stalnaker’s additional axioms

Belief as subjective certainty: an agent who feels certain that φ is
true also feels certain that she knows that φ is true.
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Belief as the closure of the interior - Stalnaker’s system

In this system, one can prove the following striking equivalence:

Bφ↔ K̂Kφ,

where K̂ abbreviates ¬K¬.
▶ Belief is equivalent to “the epistemic possibility of knowledge”.

▶ In particular, belief can be defined in terms of
knowledge—once you have knowledge, you get belief for free.

Recall:
[[Kφ]] = Int([[φ]])

[[K̂φ]] = Cl([[φ]]).

We then obtain that

[[Bφ]] = Cl(Int([[φ]])).
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Belief as the closure of the interior - Stalnaker’s system

Theorem 14 ([Baltag et al., 2019])

Stal is sound and complete with respect to the class of extremally
disconnected spaces.

Recall: A space (X, τ) is called extremally disconnected if the
closure of each open subset of X is open.

Example 2: Alexandroff spaces constructed from directed preorder.
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Belief as the closure of the interior - Stalnaker’s system
Moreover, Stalnaker’s system entails

▶ KD45B as the logic of belief

B(φ→ ψ) → (Bφ→ Bψ)

Bφ→ ¬B¬φ
Bφ→ BBφ

¬Bφ→ B¬Bφ

▶ S4.2K as the logic of knowledge

K(φ→ ψ) → (Kφ→ Kψ)

Kφ→ φ

Kφ→ KKφ

K̂Kφ→ KK̂φ

Theorem 15 ([Gabelaia, 2001])

S4.2K is sound and complete with respect to the class of
extremally disconnected spaces (under the interior semantics).

Theorem 16 ([Baltag et al., 2019])

KD45B is sound and complete with respect to the class of
extremally disconnected spaces (under the closure of interior
semantics).
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Belief as the closure of the interior - Further Comments

However, we might want to work with a larger classes of
topological spaces that includes more natural topological spaces.

Q. Is the best epistemic interpretation of the interior operator
knowledge? Can we give it a “more direct” epistemic reading?
[Bjorndahl and Özgün, 2020, Baltag et al., 2022]
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Belief as the closure of the interior - Further Comments

The connection between evidence and open sets comes to exist at
the most elementary level, namely at the level of a subbasis.

EPISTEMOLOGY TOPOLOGY

Directly observable Subbasis (Σ)

basic evidence

Directly observable Basis (B)
combined evidence

Verifiable evidence Open Sets (τ)

Factive evidence at x Open neighbourhood U ∋ x

The interior semantics (over LK) is clearly not expressive enough
to distinguish different types of open sets, and, in turn, cannot
account for different notions of evidence possession.
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Belief as the closure of the interior - Further Comments

The current framework does not have any syntactic representation
of evidence: everything we can say about evidence has to be said
at a purely semantic level.

These motivate another topological framework inspired by the
evidence models introduced in [van Benthem and Pacuit, 2011].

Next Lecture: Belief as dense interior

Baltag, A., Bezhanishvili, N., Özgün, A., and Smets, S. (2020)
Justifed belief, knowledge, and the topology of evidence. Synthese
200, 512.
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Questions?
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(2022).
Justified belief, knowledge, and the topology of evidence.
Synthese, 200(6):1–51.

Bezhanishvili, G., Bezhanishvili, N., Lucero-Bryan, J., and van
Mill, J. (2015).
S4.3 and hereditarily extremally disconnected spaces.

54 / 54



Georgian Mathemetical Journals, 22:469–475.

Bjorndahl, A. and Özgün, A. (2020).
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