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Motivation

We are interested in studying notions of belief and knowledge, for
a rational agent who is in possession of some (possibly false,
possibly mutually contradictory) pieces of evidence.
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Topology as Information Structures
Joey is an evolutionary biologist, investigating an animal
fossil. They receive pieces of evidence from three sources
(from colleagues or experiments):

e1: it is a mammal
e2: it can swim
e3: it is a non-flying bird

crocodile

ape

hippodolphin giraffe

penguin

kakapo

tortoise

How can Joey form consistent beliefs based on their evidence?
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Motivation

We are interested in studying notions of belief and knowledge, for
a rational agent who is in possession of some (possibly false,
possibly mutually contradictory) pieces of evidence.

▶ an agent’s rational belief is based on the available evidence;

▶ evidence is represented both semantically and syntactically;

▶ belief and knowledge are not primitive, they are built from
evidence pieces.

This work is heavily inspired by [van Benthem and Pacuit, 2011].

This lecture is based on the material in [Baltag et al., 2022] and
[Özgün, 2017, Chapter 5]. Relevant proofs can be found in these
sources.
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Preliminaries: Evidence Models

Definition ([van Benthem and Pacuit, 2011])

A (uniform) evidence model is a tuple M = (X, E0, V ), where

▶ X ̸= ∅ is the set of possible worlds (or “states”);

▶ E0 ⊆ P(X) is the set of basic evidence sets (also called
“pieces of evidence”), satisfying X ∈ E0 and ∅ ̸∈ E0;

▶ V : Prop→ P(X), where Prop is a set of propositional
variables.

e ∈ E0: pieces of direct evidence.

But evidence pieces are fallible (could be false), and could be
mutually inconsistent.

An evidence e is factive (or “correct”) at world x if x ∈ e.
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Forming Beliefs based on (Fallible) Evidence

The main idea behind van Benthem & Pacuit’s semantics:

The rational agent tries to form consistent beliefs, by looking at all
maximally finitely-consistent “blocks” of evidence, and believing
whatever is entailed by all of them.

▶ “Having evidence for φ need not imply belief.”

▶ “When forming beliefs, the agent should take all their
available evidence for and against φ into account.”
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Bodies of Evidence

A body of evidence is a family F ⊆ E0 of evidence pieces s.t. every
finitely many of them are mutually consistent:

(∀F ′ ⊆fin F )(F
′ ̸= ∅ ⇒

⋂
F ′ ̸= ∅)

I.e., a body of evidence is a subset of E0 that has the finite
intersection property.

Notation:

▶ F := the family of all bodies of evidence over M.

▶ Ffin:= the family of all finite bodies of evidence over M.
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(Combined) Evidence

▶ A (combined) evidence is any nonempty intersection of finitely
many pieces of evidence.

▶ E is the family of all (combined) evidence:

E := {
⋂
F | F ∈ Ffin}

Note: E constitutes a topological basis on X.

e ∈ E : direct evidence obtained by combining finitely many pieces
of direct evidence.
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Evidence Models

(X, E0)

e0 ∈ E0: a piece of direct evidence.
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Evidence Models
(X, E0)

E0 E
finite intersections

∈ ∈

e0 e

direct evidence combined evidence
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Evidential Support and Strength Order

▶ A (combined) evidence e supports P (or e is “evidence for”
P ) iff e ⊆ P .

▶ A body of evidence F supports P iff
⋂
F ⊆ P .

▶ strength order ⊆ on F :

F ⊆ F ′ := F ′ is at least as strong as F

▶ strength order ⊇ on E :

e ⊇ e′ := e′ is at least as strong as e
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Evidential Support

P

e0 is basic evidence for P iff e0 ⊆ P

e is (combined) evidence for P iff e ⊆ P
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Maximal bodies of evidence

The family of “strongest bodies of evidence” (maximal wrt ⊆):

Max⊆(F) := {F ∈ F | ∀F ′ ∈ F (F ⊆ F ′ ⇒ F = F ′)}

Observation: Max⊆(F) ̸= ∅ (Zorn’s Lemma)1.

1Every partially ordered set F that has the property that every chain in F
has an upper bound in F , contains at least one maximal element.
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Evidential Plausibility Order on States

The evidential plausibility order ⊑E associated to an evidence
model is defined by :

x ⊑E y iff ∀e ∈ E0 (x ∈ e⇒ y ∈ e)

iff ∀e ∈ E (x ∈ e⇒ y ∈ e)

We denote the strict order by

x <E y iff x ⊑E y and y ̸⊑E x.

The set of “most plausible worlds” (maximal worlds wrt ⊑E):

Max⊑EX := {y ∈ X | ∀z ∈ X(y ̸<E z)}

20 / 72



Evidential Plausibility Order on States

The evidential plausibility order ⊑E associated to an evidence
model is defined by :

x ⊑E y iff ∀e ∈ E0 (x ∈ e⇒ y ∈ e)

iff ∀e ∈ E (x ∈ e⇒ y ∈ e)

We denote the strict order by

x <E y iff x ⊑E y and y ̸⊑E x.

The set of “most plausible worlds” (maximal worlds wrt ⊑E):

Max⊑EX := {y ∈ X | ∀z ∈ X(y ̸<E z)}

20 / 72



The Logic of Evidence, Belief and Infallible Knowledge
Syntax of [van Benthem and Pacuit, 2011]

L0 := p | ¬φ | φ ∧ φ | E0φ | Bφ | [∀]φ

E0φ:= the agent has a basic (piece of) evidence for φ.

Bφ:= the agent believes φ.

[∀]φ:= the agent infallibly knows φ (i.e., φ is true in all possible
worlds).
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The Logic of Evidence, Belief and Infallible Knowledge
Semantics of [van Benthem and Pacuit, 2011]

Given an evidence model M = (X, E0, V ) and x ∈ X:

M, x |= p iff x ∈ V (p)

M, x |= ¬φ iff not (M, x |= φ)

M, x |= φ ∧ ψ iff M, x |= φ and M, x |= ψ

M, x |= ∀φ iff [[φ]]M = X

M, x |= E0φ iff ∃e ∈ E0 (e ⊆ [[φ]]M)

M, x |= Bφ iff (∀F ∈Max⊆(F))(
⋂
F ⊆ [[φ]]M)

where [[φ]]M := {x ∈ X |M, x |= φ}.

So a proposition is believed (in the sense of van Benthem and
Pacuit) iff it is supported by all the strongest bodies of evidence, or
equivalently iff it is true in all the most plausible worlds.
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Example 1

• Alice (a), a biology student, investigates an animal (unknown to
her). She receives “pieces of evidence” from 4 different sources of
information (her colleagues):

Source 1: it can swim (e1) Source 2: non-flying bird (e2)

Source 3: it lays eggs (e3) Source 4: it flies (e4)
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Illustration

• Worlds X = {Whale, Penguin,Emu,Goldfish, P igeon,Bat}
• Evidence pieces E = {e1, e2, e3, e4, X}

• Bodies of evidence:
F = { {e1}, {e2}, {e3}, {e4}, {e1, e2}, {e2, e3}
{e1, e3}, {e3, e4}, {e1, e2, e3}, {X}, {e1, X}, {e2, X}, {e3, X},
{e4, X}, {e1, e2, X}, {e1, e3, X}, {e3, e4, X}, {e1, e2, e3, X} }
• Strongest bodies: Max⊆(F) = { {e1, e2, e3, X}, {e3, e4, X} }.
• Beliefs: B(Penguin ∨ Pigeon), B(EGGS) (i.e. Be3).
• Non-beliefs: ¬B(e1), ¬B(e2), ¬B(e4).
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Consistency of Beliefs?

As we saw, a rational agent may receive mutually inconsistent
pieces of evidence.

But shouldn’t an agent’s rational beliefs still be consistent?

▶ when E0 is finite, beliefs are consistent (¬B⊥).

▶ BUT: B⊥ can hold in some “bad” infinite models.
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Example 2

M = (N, E0, V ) with E0 = {[n,∞) ∩ N | n ∈ N} and V (p) = ∅.

. . . . . . . . .1 2 3 4

▶ E0 ∈ F , therefore, Max⊆F = {E0};

▶
⋂

E0 = ∅ implies that B⊥ holds in M.
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Why did we end up with inconsistent beliefs?

The problem with their definition was that a maximal
(“strongest”) body of evidence may actually be inconsistent,
although all its finite subfamilies are consistent.

So we should instead focus on finite bodies of evidence: these are
guaranteed to be always consistent.

But of course, in infinite models, there might not exist any
maximal finite body of evidence.

So instead of focusing on all the “strongest” such bodies, we may
weaken the definition by looking at all finite bodies of evidence
that are “strong enough”.
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Evidence-Based Belief

Definition
P is believed iff it is supported by all sufficiently strong finite
bodies of evidence.

i.e. every finite body of evidence can be strengthened to a finite
body supporting P :

∀F ∈ Ffin ∃F ′ ∈ Ffin(F ⊆ F ′ ∧
⋂
F ′ ⊆ P )

Unlike the concept of belief of van Benthem & Pacuit, our
definition gives us an inherently topological notion.
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Evidential Topology

Recall: The family of (combined) evidence E forms a topological
basis.

E := {
⋂
F | F ∈ Ffin}

Given an evidence model M = (X, E0, V ), the evidential topology
τE is the topology generated by E .

i.e., the smallest topology τE in which all pieces of evidence e ∈ E0
are open.

A topo-e-model is a tuple M = (X, E0, τ, V ), where

▶ (X, E0, V ) is an evidence model,

▶ τ = τE is the evidential topology.
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Topological Evidence Models

(X, E0, τE)
E0 E τE

finite intersections arbitrary unions
∈ ∈ ∈

e0 e U

direct evidence combined evidence argument/verifiable prop.
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Evidential Support on topo-e-models

P

e0 is basic evidence for P iff e0 ⊆ P

e is (combined) evidence for P iff e ⊆ P

U is an argument for P iff U ⊆ P
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Argument

An argument for P is a disjunction U =
⋃

i∈I ei of evidences
ei ∈ E , each separately supporting P (i.e. ei ⊆ P for all i ∈ I).

▶ Epistemologically, an argument provides multiple evidential
paths to support a common conclusion P .

▶ Topologically : a set of worlds U ⊆ X is an argument (for
something) iff it is open in the evidential topology (i.e.
U ∈ τE).

Arguments ∼ Open sets
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Intermezzo: two more topological notions

Given a topological space (X, τ) and A ⊆ X:

A is dense if every non-empty open set U ∈ τ intersects A, i.e., if
for all U ∈ τ \ {∅}, U ∩A ̸= ∅. That is, A is dense in (X, τ) iff
Cl(A) = X.

A is nowhere dense if Int(Cl(A)) = ∅. Equivalently: if the interior
of its complement Int(X \A) is dense (i.e., Cl(Int(X \A)) = X).
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Properties of nowhere sense sets (recall: Int(Cl(A)) = ∅)

Given a topology τ on a nonempty set X and A ⊆ X:

▶ ∅ is nowhere dense;

▶ if A is nowhere dense, then its complement X \A is not
nowhere dense.

▶ if A is nowhere dense, then all its subsets B ⊆ A are nowhere
dense (-hence, Int(A) is also nowhere dense);

▶ if A and B are nowhere dense, then A ∪B is nowhere dense;

▶ if A is nowhere dense, then its closure Cl(A) is nowhere
dense.

These properties make “nowhere dense sets” into a good model for
“vanishingly small”, or negligible.
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From nowhere dense to “almost all”

In some papers, “almost all” is taken to mean “all points of the
space except for a nowhere dense set” [Baltag et al., 2016,
Bjorndahl and Özgün, 2020, Baltag et al., 2022].

E.g. a property P is said to be true “almost everywhere” if the set
of points not satisfying P is nowhere dense.

Note: In other literature, “almost all” means “all except for a
meagre set (-countable union of nowhere dense sets). In
Probability Theory, “almost all” means “probability 1”, i.e. “all
except for a set of measure 0”.
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Justification

A justification for P is an argument U for P that is consistent with
every available evidence (i.e. U ∈ τE such that U ⊆ P and
U ∩ e ̸= ∅ for all e ∈ E).

▶ Topologically : U is a justification for P iff U is a dense open
subset of P ; i.e. U ∈ τE such that U ⊆ P and Cl(U) = X.

Justifications ∼ Dense open sets

An argument (or justification) U is correct at x iff x ∈ U .
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Characterizations of Belief

P is believed iff it is entailed by all “sufficiently strong”
evidence.

Given a topo-e-model M = (X, E0, τ, V ),

Bφ holds iff ∀F ∈ Ffin ∃F ′ ∈ Ffin(F ⊆ F ′ and
⋂
F ′ ⊆ [[φ]])

iff ∀e ∈ E ∃e′ ∈ E(e′ ⊆ e ∩ [[φ]])

iff ∀U ∈ τ \ {∅} ∃U ′ ∈ τ \ {∅}(U ′ ⊆ U ∩ [[φ]])

iff ∃U ∈ τ(U ⊆ [[φ]] and Cl(U) = X)

iff Int([[φ]]) is dense (i.e. Cl(Int([[φ]])) = X)

iff the agent has a justification for φ.

Exercise: Prove the above equivalences (see [Özgün, 2017,
Chapter 5] for the proof).
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Characterizations of Belief

To recap, the following are equivalent:

▶ P is believed (i.e., every finite body of evidence can be
strengthened to a finite body supporting P );

▶ every (combined) evidence can be strengthened to some
evidence supporting P :
(∀e ∈ E ∃e′ ∈ E(e′ ⊆ e ∩ P )).

▶ there exists a justification for P :
∃U ∈ τ(U ⊆ P and Cl(U) = X).

▶ P includes a dense open set;

▶ Int(P ) is dense:
Cl(Int(P )) = X.

▶ X \ P is nowhere-dense:
Int(Cl(X \ P )) = ∅.
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Characterizations of Belief

Bφ holds iff Cl(Int([[φ]])) = X

iff Int(Cl([[¬φ]])) = ∅
iff [[¬φ]] is nowhere dense

iff φ is true in “almost all” epistemically possible states

Exercise: Prove the above equivalences.

▶ B⊥ never holds, since Cl(Int(∅)) = ∅.
▶ The logic of belief is KD45B (wrt the class of all

topo-e-models).
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Rational Belief is Justified Belief

So our definition really gives us a concept of justified belief: belief
for which there exists some evidential justification.

When E0 is finite, our definition is equivalent to the one of van
Benthem & Pacuit (2011).

But in general, our notion is better behaved.

Topologically natural:
P is believed iff it’s true in “almost all” worlds: i.e. all except for a
nowhere-dense set.

Logically well-behaved:
Our notion of belief is always consistent (i.e. B⊥ never holds,
since Cl(Int(∅)) = ∅).
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Overview Table

EPISTEMOLOGY TOPOLOGY

Basic Evidence Subbasis (E0)
(Combined) Evidence Basis (E)

Arguments Open Sets (τE0)

Justifications Dense Open Sets

Justified Belief Dense Interior

(nowhere-dense complement)
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A realistic notion of “Fallible” (Defeasible) Knowledge

Infallible knowledge ∀ is too much to ask: it requires absolute
certainty.

In that sense, we “know” very few things (maybe only
logical-mathematical tautologies, or maybe also things known by
introspection: “I exist” etc.)

Epistemologists proposed various “softer” notions, representing
types of “fallible knowledge” (not absolutely certain).

We define (fallible) knowledge K as “correctly justified
belief”:

P is known in world x iff the agent has a correct justification
for P at x.
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Characterizations of Knowledge

NOTE: Knowledge ̸= JTB!
(cf Gettier counterexamples)
Instead: Knowledge = belief based on a true justification!

The following are equivalent:

▶ P is “fallibly known” at x (i.e. the agent has a correct
justification for P );

▶ P includes a dense open neighborhood of x:
∃U ∈ τ(x ∈ U ⊆ P and Cl(U) = X).

▶ Interior of P is dense and contains the actual world x:
x ∈ Int(P ) and Cl(Int(P )) = X.
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Overview Table

EPISTEMOLOGY TOPOLOGY

Basic Evidence Family of generators

of a topology (E0)

(Combined) Evidence (Topological) Basis (E)

Arguments Open Sets (τE)

Justifications Dense Open Sets

Belief Dense interior

(nowhere-dense complement)

There exists factive evidence x ∈ Int(P )

(argument) for P

Knowledge = There exists a x ∈ Int(P ) which is Dense

factive justification for P
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Example 3: Knowledge ̸= JTB

M = ([0, 1], E0, τ, V ) with E0 = {(a, b) ∩ [0, 1] | a, b ∈ R, a < b}

1
20 11

4
1
8

1
3

1
5

1
6

1
7

P = [0, 1] \ { 1
n
: n ∈ N} and ¬P = { 1

n
: n ∈ N}

▶ Int(P ) = P \ {0} and Cl(Int(P )) = [0, 1]

▶ BP holds (everywhere)

▶ KP holds at every state in P , except at 0:

0 ̸∈ Int(P ) = P \ {0}

▶ 0 |= BP ∧ P , but 0 ̸|= KP (no true justification for P at 0).
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A Gettier-Type Counterexample - Blocked!

Suppose that I have strong evidence for the proposition:

(a) Sophia owns a Ford.

My evidence might be that Sophia has at all times in the past, as
far as I remember, owned a car, and always a Ford, and that she
has just offered me a ride while driving a Ford. (Unbeknownst to
me, it was in fact a rental car.)

I have another friend, Fernando, and I had no idea about where
Fernando was last week. On the basis of (a), I believe that

(b) Sophia owns a Ford or Fernando was in Beijing last week.

I am thereby justified in believing (b). As it turns out,
unbeknownst to me, Fernando was indeed in Beijing last week.
Therefore, my justified belief in (b) is true.
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Connection with the interior semantics in extremely
disconnected spaces

Note that in this refined setting, the interior operator NO
LONGER represents “knowledge”, but only “having factual
evidence for”.

Still, is there a connection to the interior semantics for knowledge,
and to the semantics of Stalnaker’s full belief in extremally
disconnected spaces?
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Connection with the interior semantics in extremely
disconnected spaces

Yes!

Recall that every topology has an extremely disconnected topology
inside:

According to Homework 2, the dense open sets of any given
topology τ form an extremally disconnected topology τdense, where
τdense = {U ∈ τ : Cl(U) = X} ∪ {∅}.
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Exercise

Check that our new definitions of justified belief B and (fallible)
knowledge K in this lecture are equivalent to putting

KP = Intdense(P ),

BP = Cldense(Intdense(P )).
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The logic of evidence, knowledge, and belief

L+ := p | ¬φ | φ ∧ φ | E0φ | 20φ | Eφ | 2φ | Bφ | Kφ | ∀φ

E0φ:= the agent has a basic (piece of) evidence supporting φ.

20φ:= the agent has a factive piece of evidence for φ.

Eφ:= the agent has (combined) evidence for φ.

2φ:= the agent has factive (combined) evidence for φ.

Bφ:= the agent has a justified belief in φ.

Kφ:= the agent knows φ (in the fallible sense).

∀φ:= the agent infallibly knows φ.
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The logic of evidence, knowledge, and belief

Given a topo-e-model M = (X, E0, τ, V ) and x ∈ X, we interpret
L+ recursively as follows:

M, x |= E0φ iff (∃e ∈ E0)(e ⊆ [[φ]]M)

M, x |= 20φ iff (∃e ∈ E0)(x ∈ e ⊆ [[φ]]M)

M, x |= Eφ iff (∃e ∈ E)(e ⊆ [[φ]]M)

M, x |= 2φ iff (∃e ∈ E)(x ∈ e ⊆ [[φ]]M)

M, x |= Bφ iff Cl(Int([[φ]]M)) = X

M, x |= Kφ iff x ∈ Int([[φ]]M) and Cl(Int([[φ]]M)) = X

M, x |= ∀φ iff [[φ]] = X

Observation: [[2φ]]M = Int[[φ]]M

(The interior-based topological semantics)

⋆ We might have a few too many modal operators here!
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The logic of (factive) evidence

L := p | ¬φ | φ ∧ φ | 20φ | 2φ | ∀φ

All other modalities are definable in this language:

E0φ := ∃20φ Bφ := ∀32φ
Eφ := ∃2φ Kφ := 2φ ∧Bφ

where
∃φ := ¬∀¬φ.

Exercise: Prove the above equivalences.
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Axiomatization

the S5 axioms and rules for ∀
the S4 axioms and rules for 2

20φ→ 2020φ

∀φ→ 20φ

20φ→ 2φ

(20φ ∧ ∀ψ) → 20(φ ∧ ∀ψ)
from φ→ ψ, infer 20φ→ 20ψ

Theorem
The logic of evidence has the finite model property, is decidable,
and is completely axiomatized by the above system.
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Fragments

The sound and complete logic of belief (=the B fragment of our
logic) is axiomatized by the system KD45B.

The sound and complete logic of (fallible) knowledge (=the K
fragment) is axiomatized by the system S4.2K .

The sound and complete logic of knowledge and belief (=the KB
fragment) is completely axiomatized by Stalnaker’s axioms for
doxastic-epistemic logic Stal.
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Further extensions
▶ Multi-agent extensions

dos Santos Gomes, D. (2025) Virtual Group Knowledge on Topological Evidence

Models. Master’s thesis, ILLC, University of Amsterdam.

Ramirez, A. I. R. (2015) Topological models for group knowledge and belief.

Master’s thesis, ILLC, University of Amsterdam.

▶ Multi-agent + Completeness results with respect to specific
topological spaces
Baltag, A., Bezhanishvili, N. and Fernańdez González, S. (2019) The
McKinsey-Tarski Theorem for Topological Evidence Logics. Proceedings of
WoLLIC 2019: 177-194.

Fernańdez González, S. (2018) Generic Models for Topological Evidence Logics.

Master’s thesis, ILLC, University of Amsterdam.

▶ Evidence diffusion in Social Networks

Zotescu, T.Ş (2024) Multi-agent Topological Models for Evidence Diffusion.

Master’s thesis, ILLC, University of Amsterdam.

Özgün, A., Smets, S., Zotescu, T.Ş (2015) Evidence Diffusion in Social

Networks: a Topological Perspective. Proceedings of LORI 2025. Forthcoming.
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Further extensions

▶ The relational definition of belief in terms of evidential
plausibility order and alternative relational settings
Baltag, A. and Liberman, A. O. (2017) Evidence Logics with Relational
Evidence. Proceedings of LORI 2017: 17-32.

Fiutek, V. (2013). Playing with Knowledge and Belief. PhD thesis. University

of Amsterdam.

Liberman, A. O. (2016). Dynamic Evidence Logics with Relational Evidence.

Master’s thesis, ILLC, University of Amsterdam.

▶ Dynamics of evidence management
van Benthem, J. and Pacuit, E. Dynamic Logics of Evidence-Based Beliefs.
Studia Logica (2011) 99: 61.

Özgün, A. (2017) Evidence in Epistemic Logic: A topological perspective. PhD

thesis. Université de Lorraine & University of Amsterdam - Chapter 5.
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Further extensions

▶ Quantitative extensions

Pinto Prieto, D., de Haan R., and Özgün, A. , A Belief Model for Conflicting

and Uncertain Evidence: Connecting Dempster-Shafer Theory and the Topology

of Evidence. Proceedings of KR 2023.

Fiutek, V. (2013). Playing with Knowledge and Belief. PhD thesis. University

of Amsterdam.

Baltag, A., Fiutek, V., and Smets., S. (2016). Belief and Evidence in

Justification Models. In Advances in Modal Logic, vol. 11, pp. 156-176, (Eds)

Lev Beklemishev, Stéphane Demri and András Máté, College Publications.
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Extra, time permitting: Defeasible Knowledge

60 / 72



Interaction Between Knowledge and Belief

Platonic equation:

knowledge = justified true belief (JTB) + (??)

“an agent knows φ iff φ is true, they believe that it is true
and they are justified in believing that φ.”

There are many proposals for (??). It is not an easy task, if
possible, to identify a unique notion of knowledge that can deal
with all kinds of intuitive counterexamples.

One can accept that all these proposals “capture important
intuitions that can in some way or other be regarded as relevant to
the question whether or not a given belief constitutes a piece of
knowledge” (Rott, 2004, p. 469).
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Interaction Between Knowledge and Belief

Platonic equation:

knowledge = justified true belief (JTB) + (??)

“an agent knows φ iff φ is true, they believe that it is true
and they are justified in believing that φ.”

We can now talk about the defeasibility and stability analysis of
knowledge (Lehrer and Paxson, 1969; Lehrer, 1990; Klein, 1971,
1981; Stalnaker, 2006).
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Our knowledge is not stable

▶ irrevocable knowledge: cannot be defeated by any evidence
gathered later

▶ stable knowledge: cannot be defeated by any factive evidence
gathered later

Stability theory of knowledge
an agent knows P :

1. P is true
2. she believes that P is true
3. her belief in P cannot be defeated by new factive information.

stable belief
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Our knowledge is defeasible

▶ irrevocable knowledge: cannot be defeated by any evidence
gathered later

▶ stable knowledge: cannot be defeated by any factive evidence
gathered later

In-defeasibility theory of knowledge
an agent “indefeasibly” knows P :

1. P is true
2. she believes that P is true
3. her belief in P cannot be defeated by new factive information.

stable belief
4. her justification is undefeated by new factive information.

stable justification
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Our knowledge is defeasible

BP holds (everywhere) iff Cl(Int(P )) = X

KP holds at x iff x ∈ Int(P ) and Cl(Int(P )) = X

O1

O2x1 |= KO1

x1 x2

x3

=⇒O3

O1

O2

O3

x1 ̸|= KO1

x1 x2

x3

O3 is a misleading defeater : O2 ∩O3 = {x3} ⇒ false evidence.
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Non-misleading defeaters

K is defeasible for factive evidence, but in-defeasible for
“non-misleading” evidence.

Given a topo-e-model M = (X, E0, τ, V ) and x ∈ X,

Q ⊆ X is misleading iff it is new and it produces some false new
evidence.

Q ⊆ X is misleading iff x ̸∈ Q ∩ e ̸∈ E ∪ {∅} for some e ∈ E .

Topologically, misleading evidence adds an open set to the
evidential topology that does not include the actual state.
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The Weak Stability and Defeasibility

1. P is true

2. she believes that P is true

3. her belief in P cannot be defeated by new non-misleading
evidence. weak stable belief

̸⇓
knowledge
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Our knowledge is weakly stable

x2x1x0 O1

O2P

▶ P is true (at x0)

▶ BP holds, since Cl(Int(P )) = Cl{x1} = X

▶ BP is weakly stable

▶ x0 ̸|= KP , since x0 ̸∈ Int(P ) = {x1}
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The Weak Stability and Defeasibility

an agent knows P :

1. P is true

2. she believes that P is true

3. her belief in P cannot be defeated by new non-misleading
evidence. weak stable belief

4. the belief in its justification is undefeated by new
non-misleading evidence. weak stable justification
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Our knowledge is weakly in-defeasible

an agent knows P :

1. P is true

2. she believes that P is true

3. her belief in P cannot be defeated by new non-misleading
evidence. weak stable belief

4. the belief in its justification is undefeated by new
non-misleading evidence. weak stable jutification

x |= KP iff ∃U ∈ τ\{∅} s.t. U ⊆ P and U∩Q ̸= ∅ for all non-misleading Q
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Questions?
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