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Aybüke Özgün

ILLC, University of Amsterdam

Tsinghua Logic Summer School
17.07.2025

1 / 55



Motivation

So far we looked at topological evidence models, modelling what
the agent comes to know and believe based on the evidence they
have gathered.

Today, we will consider models where the topology represents all
the evidence the agent can potentially obtain, and we explicitly
refer to the evidence the agent currently possesses.
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Example: speeding of a car

A policeman uses a radar with accuracy ±2 km/h to determine
whether a car is speeding in a 50 km/h speed-limit zone. Suppose
the radar shows 51 km/h:

P = (50,∞) := the car is speeding
U1 = (49, 53) := the reading of the 1st-radar is 51 km/h

. . .
49 50 51 52 53

. . .

PU1

With the measurement (49, 53) in hand, the policeman cannot be
said to know that the car is speeding: (49, 53) ̸⊆ S = (50,∞).
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Example: speeding of a car

Suppose that the policeman takes another measurement, i.e.,
spends more effort, using a more accurate radar with an accuracy
of ±1 km/h which shows 51.5 km/h.

P = (50,∞) := the car is speeding
U2 = (50.5, 52.5) := the reading of the 2nd-radar is 51.5 km/h

. . .
49 50 51 52 53

. . .

P
U2

With the measurement (50.5, 52.5) in hand, the policeman comes
to know that the car is speeding: (50.5, 52.5) ⊆ S = (50,∞).
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Example: speeding of a car

. . .
49 50 51 52 53

. . .

PU1 U2

▶ X = (0,∞) as the set of possible worlds, where we assume
the car is known to be moving;

▶ B = {(a, b) ∈ Q×Q : 0 < a < b <∞} as possible
measurement results by arbitrarily accurate radars.

▶ B is a topological basis over X, and the topology τ generated
by B is the standard topology on real numbers (restricted to
X).
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Subset Space Semantics and Topo-Logic

Topologic was introduced in [Moss and Parikh, 1992], to capture
the relationship between effort and knowledge.

It is a single agent logic with two modalities:

▶ Kφ : the agent knows φ.

▶ ■φ for (evidence-gathering) effort:

■φ : after any effort, φ is still true.

Note: ■ is not the normal modal operator we know from modal
logic.

Effort could be measurement, computation, approximation,
learning, hearing announcement, etc.
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Subset Space Semantics (SSL)

(LK■) φ ::= p | ¬φ | φ ∧ φ | Kφ | ■φ

Kφ:= the agent infallibly knows φ

■φ:= φ is stably true (under any further evidence-gathering)
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Subset Space Semantics (SSL)

(LK■) φ ::= p | ¬φ | φ ∧ φ | Kφ | ■φ

Definition 1 (Subset Space Model)

A subset space is a pair (X,O) where X is a non-empty set and
O ⊆ P(X). A subset space model is a tuple (X,O, V ) where
V : Prop → P(X).

Note: (X,O) is not necessarily a topological space.

Formulas of LK■ are interpreted with respect to pairs of the form
(x, U) with x ∈ U ∈ O, called epistemic scenarios.

▶ x represents the actual state, and U represents the agent’s
current evidence, e.g., result of her measurement.
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Subset Space Semantics (SSL)

(LK■) φ ::= p | ¬φ | φ ∧ φ | Kφ | ■φ

Given a subset space model X = (X,O, V ) and an epistemic
scenario (x,U) of X :

X , (x, U) |= p iff x ∈ V (p)

X , (x, U) |= ¬φ iff X , (x, U) ̸|= φ

X , (x, U) |= φ ∧ ψ iff X , (x,U) |= φ and X , (x,U) |= ψ

X , (x, U) |= Kφ iff (∀y ∈ U)(X , (y, U) |= φ)

X , (x, U) |= ■φ iff ∀O ∈ O(x ∈ O ⊆ U ⇒ X , (x,O) |= φ)

Note: Evaluation points, epistemic scenarios, are pairs of a point
and a set, rather than single points, as in the interior semantics
discussed earlier.
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SSL: effort modality and knowledge

(LK■) φ := p | ¬φ | φ ∧ φ | Kφ | ■φ
X

(X,O)
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SSL: effort modality and knowledge

(LK■) φ := p | ¬φ | φ ∧ φ | Kφ | ■φ

U

X

x

x := the actual state and U := the agent’s current evidence
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SSL: effort modality and knowledge

(LK■) φ := p | ¬φ | φ ∧ φ | Kφ | ■φ

.

O′
U

X

x

(x, U) |= ■φ iff ∀O ∈ τ(x ∈ O ⊆ U ⇒ (x,O) |= φ)
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More on the effort modality ■φ

▶ subset space style semantics is rich enough to distinguish
potential evidence from the agent’s current evidence;

▶ knowledge is entailed by the agent’s current evidence;

▶ more effort corresponds to a smaller neighbourhood, to a
better approximation of where the real world is.
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Speeding P = (50,∞) is verifiable with certainty

. . .
49 50 51 52 53

. . .

PU1 U2

▶ The policeman doesn’t know P with certainty in U1.

▶ But P is verifiable with certainty. He can always get a better
measurement in which P is infallibly known!

(x, U1) |= p→ ♦Kp

▶ For instance in U2, P is infallibly known.
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Not speeding X \ P = (−∞, 50] is not verifiable with
certainty

. . .
49 50 51 52 53 ∞. . .

P

If the speed of the car is exactly 50 km/h, then the car is not
speeding, but the policeman will never know that!

So X \ P is not always verifiable with certainty, hence P itself is
not always falsifiable.

Nevertheless, X \ P is always falsifiable: if false (i.e. if the speed is
in P , so that car is speeding), then as we saw the policeman will
come to infallibly know that (by some more accurate
measurement).
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Being closed to speeding CS = (49, 50] is neither verifiable
nor falsifiable with certainty

. . .
49 50 51 52 53 ∞. . .

CS

If x = 50 then CS is true, but CS will never be known for sure
(verified).

If x = 49 then CS is false, but CS will never be falsified with
certainty.

21 / 55



Validity

▶ φ is valid in a model X , and write X |= φ, if X , (x, U) |= φ
for all epistemic scenarios (x,U) in X .

▶ φ is valid, denoted |= φ, if X |= φ for all models X . for all X.

▶ [[φ]]UX = {x ∈ U : X , (x, U) |= φ} is the truth set, or
equivalently, extension of φ under U in the model X . We
again omit the notation for the model, writing simply
(x, U) |= φ and [[φ]]U , whenever X is fixed.

These definitions can be given for more restricted classes of models
in the standard way.
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Axiomatizations

(S5K) the S5 axioms and rules for K

(S4■) the S4 axioms and rules for ■
(AP) (p→ ■p) ∧ (¬p→ ■¬p), for all p ∈ Prop

(CA) K■φ→ ■Kφ

Table: Logic SSL

Theorem 2 ([Moss and Parikh, 1992])

SSL is sound and complete with respect to the class of all subset
spaces.
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Axiomatizations

(S5K) the S5 axioms and rules for K

(S4■) the S4 axioms and rules for ■
(AP) (p→ ■p) ∧ (¬p→ ■¬p), for all p ∈ Prop

(CA) K■φ→ ■Kφ
(WD) ♦■φ→ ■♦φ
(Un) ♦φ ∧ K̂♦ψ → ♦(♦φ ∧ K̂♦ψ ∧K♦K̂(φ ∨ ψ))

Table: TopoLogic

Theorem 3 ([Georgatos, 1993, Georgatos, 1994])

TopoLogic is sound and complete with respect to the class of all
topological spaces. Moreover, it has the finite model property,
therefore, it is decidable.
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Interior as Knowability

[Bjorndahl, 2018] proposes a topological semantics for a notion of
knowability in terms of the interior operator.

▶ He intends to capture a notion of knowability as potential
knowledge.

φ is knowable := existence of a piece of truthful evidence entailing φ

This notion of knowability can be naturally formalized by the
topological notion of the interior of a set:

x ∈ Int(A) iff (∃U ∈ τ)(x ∈ U ⊆ A)
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Knowledge and Knowability in Subset Space Semantics

(LK2) φ ::= p | ¬φ | φ ∧ φ | Kφ | 2φ

Given a topological model X = (X, τ, V ) and an epistemic
scenario (x,U) of X ,

(x, U) |= Kφ iff (∀y ∈ U)((y, U) |= φ)

(x, U) |= 2φ iff (∃O ∈ τ)(x ∈ O ⊆ [[φ]]U )

iff x ∈ Int([[φ]]U )1

1This 2-operator is formally similar to the 2-operator we studied on
topo-e-models [Özgün, 2017, Baltag et al., 2022]. Their meanings are different
though.
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Axiomatization ELK2

ELK2 := S5K + S42 + (Kφ→ 2φ)

Theorem 4 (Shehtman, 1999)

ELK2 is sound and complete w.r.t. all topological spaces.
Moreover, it has the finite model property, therefore, it is
decidable.2

Q. Does it make sense to have S5 for K and S4 for 2? In
particular, why have Negative Introspection for K but not for 2?

Q. What about belief?

2Also see
[Goranko and Passy, 1992, Bennett, 1996, Shehtman, 1999, Aiello, 2002].
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Back to Stalnaker’s Logic Stal

In [Bjorndahl and Özgün, 2020], we refine and extend Stalnaker’s
logic of knowledge and belief, Stal.

▶ We argue that the plausibility of the principles Stalnaker
proposes relating knowledge and belief relies on a subtle
equivocation between:

(1) an “evidence-in-hand” conception of knowledge, and
(2) a weaker “evidence-out-there” notion of what could come to

be known.

▶ We import Stalnaker’s principles into a “richer” semantic
setting based on topological subset spaces.
▶ These models are rich enough to respect the distinction

between (1) and (2), yielding a trimodal logic of knowledge,
knowability, and belief.
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Recall: Stalnaker’s System

Stalnaker (2006) has proposed a logic intended to capture the
relationship between knowledge and belief, where belief is
interpreted in the strong sense of subjective certainty.

(LKB) φ ::= p | ¬φ |φ ∧ ψ |Kφ |Bφ

This logic extends the classic S4 system for knowledge...

(KK) K(φ→ ψ) → (Kφ→ Kψ) Distribution

(TK) Kφ→ φ Factivity

(4K) Kφ→ KKφ Positive introspection

(NecK) from φ infer Kφ Necessitation

Table: S4K axioms for knowledge
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Recall: Stalnaker’s System

...with the following additional axioms.

(DB) Bφ→ ¬B¬φ Consistency of belief

(sPI) Bφ→ KBφ Strong positive introspection

(sNI) ¬Bφ→ K¬Bφ Strong negative introspection

(KB) Kφ→ Bφ Knowledge implies belief

(FB) Bφ→ BKφ Full belief

Table: Stalnaker’s additional axioms
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...with the following additional axioms.

(DB) Bφ→ ¬B¬φ Consistency of belief

(sPI) Bφ→ KBφ Strong positive introspection

(sNI) ¬Bφ→ K¬Bφ Strong negative introspection

(KB) Kφ→ Bφ Knowledge implies belief

(FB) Bφ→ BKφ Full belief

Table: Stalnaker’s additional axioms

Belief as subjective certainty: an agent who feels certain that φ is
true also feels certain that she knows that φ is true.
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Recall - Belief as the closure of the interior
In this system, one can prove the following striking equivalence:

Bφ↔ K̂Kφ,

where K̂ abbreviates ¬K¬.
▶ Belief is equivalent to “the epistemic possibility of knowledge”.

▶ In particular, belief can be defined in terms of
knowledge—once you have knowledge, you get belief for free.

Recall: The interior-based topological semantics

[[Kφ]] = Int([[φ]])

[[K̂φ]] = Cl([[φ]]).

Then:
[[Bφ]] = Cl(Int([[φ]]))
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Stalnaker’s System

Let’s have a closer look at Stalnaker’s axioms, in particular, focus
on (KB) and (FB).

Kφ→ Bφ

“If the agent knows φ, then they believe φ.”

▶ Knowledge is stronger than belief.

Bφ→ BKφ

“If the agent believes φ, then they believe that they know φ.”

▶ Specific to Stalnaker’s notion of belief: an agent who feels
certain that φ is true also feels certain that they know that φ
is true.
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Stalnaker’s System

Given the strong sense of belief Stalnaker seeks to capture, each of
(KB) and (FB) has a certain plausibility.

Tension between (KB) and (FB) emerges when knowledge is
interpreted more concretely in terms of what is justified by a body
of evidence.
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Knowledge from evidence “in hand”
A simple example: Speeding car example!

Another simple example: you’ve measured your height to be 1.6m,
±2 cm. With this measurement in hand, you might be said to
know that you are less than 1.7m tall (having ruled out the
possibility that you are taller).

We called this the evidence-in-hand conception of knowledge.

This fits well with (KB) (Kφ→ Bφ).

▶ If you have evidence-in-hand that entails φ, you should be
certain of φ.

It does not sit comfortably with (FB) (Bφ→ BKφ).

▶ You can be (subjectively) certain of φ without also being
certain that you currently have evidence-in-hand that
guarantees φ.
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Knowledge from evidence “out there”
Consider now a weaker, existential interpretation of “available
evidence”: there is evidence (somewhere out there that the agent
in principle has) entailing φ.

Call this the evidence-out-there conception of knowledge.

▶ Not necessarily “in hand” at the moment.

▶ Intuitively, we’ve shifted from what’s known to what’s
knowable.

(FB) (Bφ→ BKφ) becomes plausible.

▶ If you are certain of φ, then you are certain that there is
evidence entailing φ.

▶ Only believe what you think you could come to know.

(KB) (Kφ→ Bφ) falters.

▶ The mere fact that you could, in principle, discover evidence
entailing φ should not in itself imply that you believe φ.
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Knowledge and knowability

It seems we want the “evidence-in-hand” intuition for (KB), and
the “evidence-out-there” intuition for (FB).

Does “evidence-out-there” intuition (available evidence) re-
mind us of anything from previous lectures?

x ∈ Int(A) iff (∃U ∈ τ)(x ∈ U implies U ⊆ A).
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Knowledge and knowability

Why don’t we take both “evidence-in-hand” and
“evidence-out-there” to also talk about belief?

Let LK2B denote the language LKB extended with a “new” unary
modality 2.
▶ Write Kφ for “φ is entailed by the evidence-in-hand”.

▶ Gloss: “φ is known”.

▶ Write 2φ for “φ is entailed by the evidence-out-there”.
▶ Gloss: “φ is knowable”.

(KB) stays the same.

(FB) becomes (RB), “responsible belief”:

(Bφ→ BKφ) ; (Bφ→ B2φ).
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Knowledge and knowability

We now interpret Stalnaker’s logic enriched with 2 as knowability
in topological subset spaces.
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Topological Subset Space Semantics

Recall the proposal of [Bjorndahl, 2018]:
Given a topo-model X = (X, τ, ν) and an epistemic scenario
(x, U) of X ,

X , (x, U) |= Kφ iff (∀y ∈ U)(X , (y, U) |= φ)

X , (x, U) |= 2φ iff x ∈ Int([[φ]]U )

▶ τ as the set of all possible pieces of evidence, or all possible
results of measurements: evidence-out-there.

▶ Given an epistemic scenario (x,U), x represents the actual
world and U the agent’s current evidence, i.e.,
evidence-in-hand.
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Logic for knowledge, knowability, and belief: LK2B

What about belief?

Recall that in Stalnaker’s system, belief was reducible to knowledge
(via Bφ↔ K̂Kφ), obviating the need for a separate semantic
clause for B.

Can we take advantage of this?

Not directly: adding Stalnaker’s axioms (with (FB) replaced by
(RB)) to ELK2 does not produce a logic strong enough to reduce
belief to knowledge/knowability.

⋆ This is noteworthy: once we carefully distinguish knowledge
from knowability, Stalnaker’s postulates no longer imply that
belief is reducible.
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Logic for knowledge, knowability, and belief: LK2B

However, we can strengthen ELK2 with additional postulates to
obtain such a reduction.

Let StalK2B denote ELK2 together with the following:

(KB) B(φ→ ψ) → (Bφ→ Bψ) Distribution of belief

(sPI) Bφ→ KBφ Strong pos. introspection

(KB) Kφ→ Bφ Knowledge implies belief

(RB) Bφ→ B2φ Responsible belief

(wF) Bφ→ 3φ Weak factivity

(CB) B(2φ ∨2¬2φ) Confident belief

Our additional axioms

(KB), (sPI), and (KB) are theorems of Stalnaker’s original system.

(RB) is the translation of (FB) we have already discussed.
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Logic for knowledge, knowability, and belief: LK2B

Both (wF) and (CB) become theorems of Stalnaker’s original
system if we “forget” the distinction between 2 and K—that is,
replace every 2 with K (and every 3 with K̂).

Weak factivity:

Bφ→ 3φ
“If you are certain of φ, then φ cannot be knowably false.”

Confident belief:

B(2φ ∨2¬2φ)
“You believe that φ is either knowable or knowably unknowable.”
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Logic for knowledge, knowability, and belief: LK2B

StalK2B proves the following equivalence:

Bφ↔ K32φ.

▶ Belief is definable from knowledge and knowability .
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Logic for knowledge, knowability, and belief: LK2B

Semantically, this equivalence corresponds to the conception of
belief as dense interior [Özgün, 2017, Baltag et al., 2022].

(x, U) |= Bφ iff (x,U) |= K32φ
iff U ⊆ Cl(Int([[φ]]U ))

iff U = Cl(Int([[φ]]U ))

iff [[φ]]U has dense interior in U.

▶ Dense interior is a standard topological notion of largeness.
▶ These are precisely the sets with nowhere dense complements.

Intuitively, such a set fills “almost all” of the space. Morally, then:

(x, U) |= Bφ iff for “almost all” y ∈ U , (y, U) |= φ.

So, while knowledge is interpreted (as usual) as truth in all
possible alternatives, belief becomes truth in almost all possible
alternatives.
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Logic for knowledge, knowability, and belief: LK2B

Theorem 5
StalK2B is a sound and complete axiomatization of LK2B with
respect to the class of topological subset models.

Theorem 6
StalK2B proves all the KD45 principles for belief. In fact, KD45B
is a sound and complete axiomatization of the fragment LB with
respect to the class of topological subset models.
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Weaker notions of belief

We adopted weak factivity (wF) and confident belief (CB) in order
to obtain a reduction result for belief analogous to Stalnaker’s.

Of course, we could drop one or both of these principles.

▶ In this case, belief is no longer reducible, so we need to
augment topological subset models to provide the structure
necessary to interpret belief as a primitive.
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Weaker notions of belief

Let ELK2B be the logic obtained by dropping the axioms (wF) and
(CB) from StalK2B.

As before, we rely on topological subset models; however, we now
define the evaluation of formulas with respect to epistemic-doxastic
(e-d) scenarios, which are tuples of the form (x, U, V ) where
(x, U) is an epistemic scenario, V ∈ τ , and V ⊆ U .

▶ Call V the doxastic range.
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Weaker notions of belief

The key semantic clauses are:

(x, U, V ) |= Kφ iff U = [[φ]]U,V

(x, U, V ) |= 2φ iff x ∈ Int([[φ]]U,V )

(x, U, V ) |= Bφ iff V ⊆ [[φ]]U,V ,

where
[[φ]]U,V = {x ∈ U : (x, U, V ) |= φ}.

▶ Modalities K and 2 are interpreted (essentially) as before.
▶ Belief is universal quantification over the doxastic range.

Intuitively:
▶ V is the agent’s “conjecture” about the world, typically

stronger than what is guaranteed by her evidence-in-hand U .
▶ States in V are considered “more plausible” than the other

states in U , so belief = truth in all these more plausible states.
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Weaker notions of belief

Note that we do not require that x ∈ V ; this corresponds to the
intuition that the agent may have false beliefs.

In order to distinguish these semantics from those previous, we
refer to them as epistemic-doxastic (e-d) semantics for topological
subset spaces.
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Weaker notions of belief

Theorem 7
ELK2B is a sound and complete axiomatization of LK2B with
respect to the class of all topological subset spaces under e-d
semantics.

Call an e-d scenario (x,U, V ) dense if V is dense in U (i.e., if
U = Cl(V )).

Theorem 8
ELK2B + (wF) is a sound and complete axiomatization of LK2B

with respect to the class of all topological subset spaces under e-d
semantics for dense e-d scenarios.
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Questions?
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