Topological Approaches to Epistemic Logic Homework 2

Due Wednesday, July 17, 2025, 13h30 (Beijing time)!

The homework is **individual** and **obligatory** for passing the course. BONUS question is not mandatory but it will give you extra points.

- 1. (30 pts) Given a topological space (X,τ) and any two subsets $U_1,U_2\subseteq X$
 - (a) (15 pts) if U_1 is open and dense and U_2 is dense, then $U_1 \cap U_2$ is dense.
 - (b) (15 pts) if U_1 and U_2 are nowhere-dense, then $U_1 \cup U_2$ are nowhere-dense.
- 2. (50 pts) Let (X, τ) be a topological space and define τ_{dense} on X as follows:

$$\tau_{dense} = \{ U \in \tau \mid Cl(U) = X \} \cup \{\emptyset\},\$$

where Cl is the closure operator of τ . Prove that

- (a) (10 pts) for all nonempty $U, V \in \tau_{dense}$, we have $U \cap V \neq \emptyset$,
- (b) (20 pts) τ_{dense} is a topology,
- (c) (20 pts) τ_{dense} is extremally disconnected.
- 3. (20 pts) As stated on slide 50 of Lecture 2, the logic KD45_B is sound and complete with respect to the class of extremally disconnected spaces (under the closure of interior semantics). Which axioms of $KD45_B$ are invalidated by some topo-models (that are not extremally disconnected) when we interpret $B\varphi$ as $[\![B\varphi]\!] = Cl(Int([\![\varphi]\!]^{\mathcal{X}}))$? Justify your answers by giving counterexamples that invalidate these axioms and explaining why the axioms are false in these models.
- 4. (BONUS 20 pts) Read the following definitions carefully:

Definition 1 (Subspace). Given a topological space (X, τ) and a nonempty subset $P \subseteq X$, the topological space (P, τ_P) is called a subspace of (X, τ) (induced by P), where

$$\tau_P = \{ U \cap P \mid U \in \tau \}.$$

Definition 2. A topological space (X, τ) is called hereditarily extremally disconnected if every subspace of (X, τ) is extremally disconnected.

Let (X,R) be a total preordered set. Show that the Alexandroff topology τ_R , defined as

$$\tau_R = \{ U \subseteq X \mid U \text{ is an up-set of } (X, R) \},$$

is hereditarily extremally disconnected.

¹See the course handout for the definition of total preorders