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1 Background
In this section, we provide the technical preliminaries essential for the class. This course fo-
cuses primarily on topological semantics for (dynamic) epistemic and doxastic logics, however,
we occasionally resort to their connection with the relational semantics and the well-developed
completeness results therein, in order to obtain similar conclusions for the topological counter-
part. The basics of the course rely on three different formal settings: the standard relational
semantics for the basic modal logic, the interior-based topological semantics à la McKinsey &
Tarski (1944), and the subset space semantics introduced by Moss & Parikh (1992). While the
relational setting serves only as a technical tool utilized in obtaining meta-logical results, the
latter two topological settings have inspired several logics that formalize, besides various notions
of knowledge and belief, important notions such as justification, evidence, argument, and knowa-
bility. We leave the conceptual motivation for using topological semantics for the classroom, and
present here only the background formal tools.

1.1 Relational Semantics for Modal Logic
In this section, we briefly present the standard relational semantics for the basic modal language
and define some well-known epistemic and doxastic logics. This is in no way an exhaustive
presentation of relational semantics for modal epistemic and doxastic logics: here we aim to
fix notation and summarize the results we use during the lecture. For a more comprehensive
treatment of modal logic, please consult, e.g., Blackburn et al. (2001); Chagrov & Zakharyaschev
(1997). The presentation in this section is based on the basic unimodal modal language since
we make use of the technical aspects of the relational setting to prove results almost exclusively
regarding unimodal epistemic/doxastic systems.

Definition 1 (Syntax of L2). The language of basic modal logic L2 is defined recursively as

φ ::= p | ¬φ | (φ ∧ φ) |2φ,

where p ∈ Prop, a countable set of propositional variables.

Abbreviations for the Boolean connectives ∨,→ and ↔ are standard, and ⊥ is defined as p∧¬p.
We employ 3φ as an abbreviation for ¬2¬φ. We follow the usual rules for elimination of
parenthesis in the language.

Since we, in general, work with the above defined modal language in an epistemic/doxastic
setting, the particular languages we consider in this work typically include, instead of 2, modal-
ities such as K and B for knowledge and belief, respectively. Accordingly, LK denotes the basic
epistemic language and LB the basic doxastic language defined as in Definition 1.

We are particularly interested in the modal systems that are commonly used in the formal
epistemology literature to represent notions of knowledge and belief. Some of the interesting and
widely used axioms and an inference rule formalizing properties of these notions are listed in
Table 1.

We again use a similar notational convention as we did in case of the languages. For example,
the axiom of Consistency for belief is denoted by (DB) Bφ → ¬B¬φ, Positive Introspection for
knowledge is written as (4K) Kφ→ KKφ, etc.

Let CPL denote all instances of classical propositional tautologies (see, e.g., Chagrov & Za-
kharyaschev, 1997, Section 1.3 for an axiomatization of classical propositional logic). Throughout
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(K2) 2(φ→ ψ) → (2φ→ 2ψ) Normality
(D2) 2φ→ ¬2¬φ Consistency
(T2) 2φ→ φ Factivity
(42) 2φ→ 22φ Positive Introspection
(.22) ¬2¬2φ→ 2¬2¬φ Directedness
(.32) 2(2φ→ ψ) ∨2(2ψ → φ) Connectedness
(52) ¬2φ→ 2¬2φ Negative Introspection
(Nec2) from φ, infer 2φ Necessitation
(MP) from φ→ ψ and φ, infer ⊢ ψ Modus Ponens

Table 1: Some unimodal axiom schemes and a rule of inference for 2

these notes, we use Hilbert-style axiom systems in order to provide the syntactic definitions of
the modal logics we work with. Recall that, the weakest/smallest normal modal logic, denoted
by K2, is defined as the least subset of L2 containing all instances of propositional tautologies
(CPL) and (K2), and closed under the inference rules (MP) and (Nec2). Then, following stan-
dard naming conventions, we define the following normal modal logics that are used to represent
knowledge and belief of agents with different reasoning power, where L+(φ) denotes the smallest
modal logic containing L and φ. In other words, L+(φ) is the smallest set of formulas (in the
corresponding language) that contains L and φ, and is closed under the inference rules of L. For
example:

KT2 = K2 + (T2)
S42 = KT2 + (42)

S4.22 = S42 + (.22)
S4.32 = S42 + (.32)
S52 = S42 + (52)

KD452 = K2 + (D2) + (42) + (52)

Table 2: Some normal (epistemic/doxastic) modal logics

While the systems S4K , S4.2K , S4.3K and S5K are considered to be logics for knowledge of
different strength, much work on the formal representation of belief takes the logical principles
of KD45B for granted (see, e.g., Baltag et al. (2008); van Ditmarsch et al. (2007); Baltag &
Smets (2008)). Hintikka (1962) considered S4K to be the logic of knowledge, S4.2K is defended
by Lenzen (1978) and Stalnaker (2006). van der Hoek (1993); Baltag & Smets (2008) studied
S4.3K as epistemic logics for agents of stronger reasoning power. While the system S5K is used
in applications of logic in computer science Fagin et al. (1995); Meyer & van der Hoek (1995);
van Ditmarsch et al. (2007), it is, as a logic of knowledge, often deemed to be too strong and
rejected by philosophers (see, e.g., Hintikka, 1962; Voorbraak, 1993, for arguments against S5K).
Throughout the course, all these systems will occasionally recur within different topological
frameworks. In the following, we first present their standard relational semantics.

Before moving on to the standard relational semantics for the basic modal logic, we briefly recall
the following standard terminology for Hilbert-style axiom systems, and set some notation. Given
a logic L defined by a (finitary) Hilbert-style axiom system, an L-derivation/proof is a finite
sequence of formulas such that each element of the sequence is either an axiom of L, or obtained
from the previous formulas in the sequence by one of the inference rules. A formula φ is called
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L-provable, or, equivalently, a theorem of L, if it is the last formula of some L-proof. In this case,
we write ⊢L φ (or, equivalently, φ ∈ L). For any set of formulas Γ and any formula φ, we write
Γ ⊢L φ if there exist finitely many formulas φ1, . . . , φn ∈ Γ such that ⊢L (φ1 ∧ · · · ∧φn) → φ. We
say that Γ is L-consistent if Γ ̸⊢L ⊥, and L-inconsistent otherwise. A formula φ is consistent with
Γ if Γ∪{φ} is L-consistent (or, equivalently, if Γ ̸⊢L ¬φ). Finally, a set of formulas Γ is maximally
consistent if it is L-consistent and any set of formulas properly containing Γ is L-inconsistent,
i.e. Γ cannot be extended to another L-consistent set. We drop mention of the logic L when it is
clear from the context.

Definition 2 (Relational Frame/Model). A relational frame F = (X,R) is a pair where X is a
nonempty set and R ⊆ X ×X. A relational model M = (X,R, V ) is a tuple where (X,R) is a
relational frame and V : Prop → P(X) is a valuation map.

Relational frames/models are also called Kripke frames/models. We use these names interchange-
ably. We say M = (X,R, V ) is a relational model based on the frame F = (X,R). While elements
of X are called states or possible worlds, one of which represents the actual state of affairs, called
the actual or real state, R is known as the accessibility or indistinguishability relation. We let
R(x) = {y ∈ X | xRy}. The set R(x) represents the set of states that the agent considers possible
at x. This way a relational structure models the agent’s uncertainty about the actual situation.
The semantics of L2 on relational models is given below.

Definition 3 (Relational Semantics for L2). Given a relational model M = (X,R, V ) and a
state x ∈ X, truth of a formula in the language L2 is defined recursively as follows:

M, x |= p iff x ∈ V (p), where p ∈ Prop
M, x |= ¬φ iff not M, x |= φ
M, x |= φ ∧ ψ iff M, x |= φ and M, x |= ψ
M, x |= 2φ iff for all y ∈ X, if xRy then M, y |= φ.

It follows from the above definition that

M, x |= 3φ iff there is y ∈ X such that xRy and M, y |= φ.

We adopt the standard notational conventions and abbreviations (see e.g., Blackburn et al., 2001,
Chapter 1.3). If M does not make φ true at x, we write M, x ̸|= φ. In this case, we say that φ
is false at x in M. When the corresponding model is clear from the context, we write x |= φ for
M, x |= φ.

We call a formula φ valid in a relational model M = (X,R, V ), denoted by M |= φ, if M, x |= φ
for all x ∈ X, and it is valid in a relational frame F = (X,R), denoted by F |= φ, if M |= φ for
every relational model based on F . Moreover, we say φ is valid in a class K of relational frames,
denoted by K |= φ, if F |= φ for every member of this class, and it is valid, denoted by |= φ, if it
is valid in the class of all frames. These definitions can easily be extended to sets of formulas in
the following way: a set Γ ⊆ L2 is valid in a relational frame F iff F |= φ for all φ ∈ Γ. These
definitions also apply to class of models in the same way. More general, we can define a notion of
logical consequence over a class of frames/models as follows (this notion is called local semantic
consequence in (Blackburn et al., 2001, Chapter 1.5)). Given Γ ⊆ L2, φ ∈ L2, and a class of
frames/models S, φ is a logical consequence of Γ over S, denoted Γ |=S φ, iff for all models M
from S and x in M, if M, x |= Γ then M, x |= φ.1 It is not difficult to see that ∅ |=S φ iff

1Following (Blackburn et al., 2001, Chapter 1.5), if S is a class of models, then a model from S is simply an
element of S. If it is a class of frames, then a model from S is a model based on a frame in S.
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S |= φ, that is, validity in S coincides with logical consequence from the empty set. We omit
the subscript for the class of frames/models when it is clear from the context.

We define ∥φ∥M = {x ∈ X | M, x |= φ} and call ∥φ∥M the truth set, or equivalently,
extension of φ in M. In particular, we write x ∈ ∥φ∥M for M, x |= φ. We omit the superscript
M when the model is clear from the context. The crucial concepts of soundness and (strong)
completeness that link the syntax and the semantics are defined in the standard way (see, e.g.,
Blackburn et al., 2001, Chapter 4.1).

Definition 4 (Soundness). Given Γ ∪ {φ} ⊆ L2 and a class of frames/models S, a logic L is
(strongly) sound with respect to S iff if Γ ⊢ φ, then Γ |=S φ.

Definition 5 (Strong Completeness). Given Γ ∪ {φ} ⊆ L2 and a class of frames/models S, a
logic L is strongly complete with respect to S iff if Γ |=S φ, then Γ ⊢ φ. It is weakly complete
(or, simply complete) iff if S |= φ, then ⊢ φ.

We conclude the section by listing the relational soundness and completeness results for the
important epistemic and doxastic logics defined in Table 2. To do so, we first list in Table 3
some important frame conditions, and then define some useful order theoretic notions that will
also be used in later chapters.

Reflexivity (∀x)(xRx)
Transitivity (∀x, y, z)(xRy ∧ yRz → xRz)
Symmetry (∀x, y)(xRy → yRx)
Antisymmetry (∀x, y)(xRy ∧ yRx→ x = y)
Seriality (∀x)(∃y)(xRy)
Euclideanness (∀x, y, z)(xRy ∧ xRz → yRz)
Directedness 2 (∀x, y, z)((xRy ∧ xRz) → (∃w)(yRw ∧ zRw))
No right branching (∀x, y, z)((xRy ∧ xRz) → (yRz ∨ zRy ∨ y = z))
Total (Connected) (∀x, y)(xRy ∨ yRx)

Preorder reflexive and transitive
Partial order reflexive, transitive and antisymmetric
Equivalence relation reflexive, transitive and symmetric

Table 3: Relevant Frame Conditions

Following the traditional conventions in order theory, we also call a reflexive and transitive
relational frame (X,R) a preordered set; and a reflexive, transitive and antisymmetric frame a
partially ordered set, or, in short, a poset. The following order theoretic notions will be useful in
later chapters.

Definition 6 (Up/Down-set,Upward/Downward-closure). Given a preordered set (X,R) and a
subset A ⊆ X,

• A is called an upward-closed set (or, in short, an up-set) of (X,R) if for each x, y ∈ X,
xRy and x ∈ A imply y ∈ A;

2Directedness is also called confluence or the Church-Rosser property.
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• A is called a downward-closed set (or, in short, a down-set) of (X,R) if for each x, y ∈ X,
yRx and x ∈ A imply y ∈ A;

• the upward-closure of A, denoted by ↑A, is the smallest up-set of (X,R) that includes A. In
other words, ↑A = {y ∈ X | ∃x ∈ A with xRy};

• the downward-closure of A, denoted by ↓A, is the smallest down-set of (X,R) that includes
A. In other words, ↓A = {x ∈ X | ∃y ∈ A with xRy}.

For every element x ∈ X, we simply write ↑x and ↓x for the upward and downward-closure of
the singleton {x}, respectively.

We can now state some of the well-known relational soundness and strong completeness results.
For a more detailed discussion, we refer to Chagrov & Zakharyaschev (1997); Blackburn et al.
(2001).

Theorem 1 (Relational (Kripke) Completeness).

• S42 is sound and strongly complete with respect to the class of preordered sets;

• S4.22 is sound and strongly complete with respect to the class of directed preordered sets;

• S4.32 is sound and strongly complete with respect to the class of total preordered sets;

• S52 is sound and strongly complete with respect to the class of frames with equivalence
relations;

• KD452 is sound and strongly complete with respect to the class of serial, transitive and
Euclidean frames.

Following Theorem 1, we sometimes refer to a class of relational frames/models by the name of
its corresponding logic. For example, a preordered set is also called an S4-frame. Similarly, a
relational model based on a serial, transitive and Euclidean frame is also called a KD45-model,
etc.

1.2 Background on Topology
In this section, we introduce the topological concepts that will be used throughout the course.
We refer to (Dugundji, 1965; Engelking, 1989) for a thorough introduction to topology.

Definition 7 (Topological Space). A topological space is a pair (X, τ), where X is a nonempty
set and τ is a family of subsets of X such that

1. X, ∅ ∈ τ, and

2. τ is closed under finite intersections and arbitrary unions.

The set X is a space; the family τ is called a topology on X. The elements of τ are called open
sets (or opens) in the space. A set C ⊆ X is called a closed set if it is the complement of an open
set, i.e., it is of the form X \ U for some U ∈ τ . We let τ = {X \ U | U ∈ τ} denote the family
of all closed sets of (X, τ). Moreover a set A ⊆ X is called clopen if it is both closed and open.

Example 2. {∅, X} is called the trivial topology on X. Moreover, the power set P(X) of X
constitutes a topology on X and it is called the discrete topology.
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Example 3. Let X = {1, 2, 3, 4} and τ = {∅, {1}, {1, 2}, {3, 4}, {1, 3, 4}, {1, 2, 3, 4}}. It is easy
to check that τ is closed under arbitrary unions and finite intersections, and ∅ and X are in τ ,
so (X, τ) is a topology.
Note: There was a mistake in the version distributed on July 9, 2025: the set {1, 3, 4} was not
included in the topology.

Example 4. A well-known example of a topology is on the real line. First, let B = {(a, b) | a, b ∈
R and a < b}, using standard interval notation: (a, b) denotes the set of all points strictly greater
than a and strictly less than b. Then, for O ⊆ R, O ∈ τ iff there exists some indexing set I such
that O =

⋃
i∈I bi where all bi ∈ B. (Note that I may be uncountable.) Thus, open sets include

(−1, 1), (−2, 2) ∪ (3, 4), and (1,∞), since the last set is equal to
⋃∞

i=2(1, i). [1, 2] and [1, 1] are
closed sets, while [10, 11) is neither closed nor open. The set

∞⋃
i=0

(
2i − 1

2i
,
2i+1 − 1

2i+1
) = (0,

1

2
) ∪ (

1

2
,
3

4
) ∪ (

3

4
,
7

8
) ∪ ...

is an open set.
We leave it to the reader to verify that this topology satisfies the two required properties (1)

and (2) in Definition 7. This topology is sometimes called the standard (or, natural) topology
on the real line. We call it the standard topology if the context is clear.

Example 5. Let (R, τ ′) be the standard topology on the real line. Let X = [0, 1], and τ =
{O | O = O′ ∩ [0, 1] for some O′ ∈ τ ′}. Then (X, τ) is a topology. This topology may be called
the standard (or natural) topology on the unit interval.

Example 6. For S ⊆ N, we say that S is cofinite if the complement of S is a finite set. (The
complement of S is the set of all natural numbers that are not in S). For the space N, the set
of all cofinite sets and the empty set constitutes a topology on N. This is called the cofinite
topology.

If for some x ∈ X and an open U ⊆ X we have x ∈ U , we say that U is an open neighborhood of
x. A point x is called an interior point of a set A ⊆ X if there is an open neighbourhood U of x
such that U ⊆ A. The set of all interior points of A is called the interior of A and is denoted by
Int(A). Then, for any A ⊆ X, Int(A) is an open set and is indeed the largest open subset of A,
that is

Int(A) =
⋃

{U ∈ τ | U ⊆ A}.

Dually, for any x ∈ X, x belongs to the closure of A, denoted by Cl(A), if and only if U ∩A ̸= ∅
for each open neighborhood U of x. It is not hard to see that Cl(A) is the smallest closed set
containing A, that is

Cl(A) =
⋂

{C ∈ τ | A ⊆ C},

and that Cl(A) = X \ Int(X \ A) for all A ⊆ X. It is well known that the interior Int and the
closure Cl operators of a topological space (X, τ) satisfy the following properties (the so-called
Kuratowski axioms) for any A,B ⊆ X (see, e.g., Engelking, 1989, pp. 14-15)3:

(I1) Int(X) = X (C1) Cl(∅) = ∅
(I2) Int(A) ⊆ A (C2) A ⊆ Cl(A)
(I3) Int(A ∩B) = Int(A) ∩ Int(B) (C3) Cl(A ∪B) = Cl(A) ∪ Cl(B)
(I4) Int(Int(A)) = Int(A) (C4) Cl(Cl(A)) = Cl(A)

3The properties (I1)− (I4) (and, dually, (C1)− (C4)) are what render the knowledge modality interpreted as
the topological interior operator an S4-type modality. We will elaborate on this in Section 2.
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A set A ⊆ X is called dense in X if Cl(A) = X and it is called nowhere dense if Int(Cl(A)) = ∅.
Moreover, the boundary of a set A ⊆ X, denoted by Bd(A), is defined as Bd(A) = Cl(A)\Int(A).

A point x ∈ X is called a limit point (or accumulation point) of a set A ⊆ X if for each open
neighborhood U of x, we have A ∩ (U \ {x}) ̸= ∅. The set of all limit points of A is called the
derived set of A and is denoted by d(A). For any A ⊆ X, we also let t(A) = X \ d(X \ A). We
call t(A) the co-derived set of A. Moreover, a set A ⊆ X is called dense-in-itself if A ⊆ d(A). A
space X is called dense-in-itself if X = d(X).

Example 7. In the standard topology on R,

• Int([0, 1]) = (0, 1)

• Int([0, 1) ∪ (1, 2]) = (0, 1) ∪ (1, 2)

• Int((−1,−0.5)) = (−1,−0.5)

• Cl((9, 10) ∪ (10, 11)) = [9, 11]

• Cl([2, 3)) = [2, 3]

• Cl(
⋃∞

i=0(
2i−1
2i , 2

i+1−1
2i+1 )) = [0, 1].

Example 8. In the standard topology on R, the set of rational numbers is dense.

Proof. To show that the set of rational numbers is dense in R, we must show that the closure
of the set of rational numbers, Q, is R. This is easiest to prove by contradiction: suppose that
there exists x ∈ R such that x ̸∈ Cl(Q). Then, since the closure of Q is the intersection of all
closed sets containing Q, there must be some closed set C such that x ̸∈ C. Since C is closed,
C is open, and x ∈ C, but C ∩ Q = ∅. However, every open set must contain some rational
number, since an open set under the standard topology in R is a union of open intervals, and
it is a well known proof that every open interval contains a rational number. Therefore, every
open set contains a rational number, and we have a contradiction.

Example 9. For the space R with the standard topology, N is nowhere dense.

Example 10. For the standard topology on R, Bd((0, 1)) = {0, 1}, and

Bd(

∞⋃
i=0

(
2i − 1

2i
,
2i+1 − 1

2i+1
)) = {0} ∪ {2

i − 1

2i
} | i ∈ N}

Note: There was a typo in the version distributed on July 9, 2025: The second union “{ 2i−1
2i }”

was wrongly written as “{ 1
2i }”.

Definition 8 (Topological Basis). A family B ⊆ τ is called a basis for a topological space (X, τ)
if every non-empty open subset of X can be written as a union of elements of B.

We call the elements of B basic opens. We can give an equivalent definition of an interior point
by referring only to a basis B for a topological space (X, τ): for any A ⊆ X, x ∈ Int(A) if and
only if there is an open set U ∈ B such that x ∈ U and U ⊆ A.

Example 11. The set {(a, b) | a, b ∈ R and a < b} is a basis for the standard topology on R.

Example 12. The set {(a, b) | a, b ∈ Q and a < b} is also a basis for the standard topology on
R.
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Example 13. The set {(a, b) | a, b ∈ Q and 0 < a < b < 1} ∪ {[0, b) | b ∈ Q and 0 < b <
1} ∪ {(a, 1] | a ∈ Q and 0 < a < 1} is a basis for the standard topology on [0, 1].

Given any family Σ = {Aα | α ∈ I} of subsets of X, there exists a unique, smallest topology
τ(Σ) with Σ ⊆ τ(Σ) (Dugundji, 1965, Theorem 3.1, page 65). The family τ(Σ) consists of ∅,
X, all finite intersections of the Aα, and all arbitrary unions of these finite intersections. Σ is
called a subbasis for τ(Σ), and τ(Σ) is said to be generated by Σ. The set of finite intersections
of members of Σ forms a basis for τ(Σ).

Example 14. The set
{(−∞, a) | a ∈ Q} ∪ {(b,∞) | b ∈ Q}

is a subbasis for the standard topology on R. Is it also a basis?

Example 15. For X = {0, 1, 2, 3}, let Σ = {{0, 1}, {1, 2}, {1, 2, 3}}. The topology generated by
Σ is {∅, {1}, {0, 1}, {1, 2}, {0, 1, 2}, {1, 2, 3}, {0, 1, 2, 3}}.

Definition 9 (Subspace). Given a topological space (X, τ) and a nonempty subset P ⊆ X, the
topological space (P, τP ) is called a subspace of (X, τ) (induced by P ) where τP = {U∩P | U ∈ τ}.

The closure ClP , the interior IntP and the derived set dP operators of the subspace (P, τP ) can
be defined in terms of the closure, interior, and derived set operators of (X, τ) as, for all A ⊆ P ,

ClP (A) = Cl(A) ∩ P
IntP (A) = Int((X \ P ) ∪A) ∩ P
dP (A) = d(A) ∩ P.

Example 16. We recall Example 5: if (R, τ ′) is the standard topology on the real line, let
X = [0, 1], and τ = {O | O = O′ ∩ [0, 1] for some O′ ∈ τ ′}. Then (X, τ) is a subspace of (R, τ ′).

Definition 10 (Hereditary Property). A property of a topological space is called hereditary if
each subspace of the space possesses this property.

Lemma 17. For any two topological space (X, τ) and (X, τ ′), if τ ⊆ τ ′ then Intτ (A) ⊆ Intτ ′(A)
for all A ⊆ X.

Exercises:
1. Why is ({1, 2, 3}, {∅, {1}, {2}, {1, 3}, {1, 2, 3}}) not a topological space?

2. Show that the cofinite topology on N given in Example 6 defines a topological space.

3. Let X = N and τ = {S ⊆ N | S is a finite set}. Is (X, τ) a topological space? Why or why
not?

4. Can you think of a topology for the space R× R? Can you prove that it is a topology?

5. In the topological space ({a, b, c}, {∅, {a}, {a, b}, {a, b, c}}), what is:

• Int({b})?
• Int({a, b})?
• Cl({a})?
• Cl({c})?
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6. Prove that for any open set O in any topological space, Int(O) = O.

7. Prove that for any closed set C in any topological space, Cl(C) = C.

8. Find an example of open sets A and B in the standard topology on R where Cl(A ∩B) ̸=
Cl(A) ∩ Cl(B).

9. On N, what is the topology generated by Σ = {[0, n] | n ∈ N}?

10. Prove Lemma 17.

2 The Interior Semantics
This section gives an overview of the essential technical preliminaries of the interior seman-
tics. The presentation of this section follows (van Benthem & Bezhanishvili, 2007, Section 2).

2.1 Syntax and Semantics
We work with the basic epistemic language LK as given in Definition 1. Since we examine the
interior semantics in an epistemic context, we prefer to use the modality Kφ (instead of 2φ)
that is read as “the agent knows φ (is true)”. The dual modality K̂ for epistemic possibility is
defined as K̂φ := ¬K¬φ.

Definition 11 (Topological Model). A topological model (or, in short, a topo-model) X =
(X, τ, V ) is a triple, where (X, τ) is a topological space and V : Prop → P(X) is a valuation
function.

Definition 12 (Interior Semantics for LK). Given a topo-model X=(X, τ, V ) and a state x ∈ X,
truth of a formula in the langauge LK is defined recursively as follows:

X , x |= p iff x ∈ V (p)
X , x |= ¬φ iff not X , x |= φ
X , x |= φ ∧ ψ iff X , x |= φ and X , x |= ψ
X , x |= Kφ iff (∃U ∈ τ)(x ∈ U and ∀y ∈ U, X , y |= φ)

It is useful to note the derived semantics for K̂φ:

X , x |= K̂φ iff (∀U ∈ τ)(x ∈ U implies ∃y ∈ U, M, y |= φ)

Truth and validity of a formula φ of LK are defined in the same way as for the relational
semantics. We here apply similar notational conventions as we have set in Section 1.1. We let
[[φ]]X = {x ∈ X | X , x |= φ} denote the truth set, or equivalently, extension of a formula φ in
topo-model X . We emphasize the difference between ||φ||M and [[φ]]X : while the former refers
to the truth set in a relational model under the standard relational semantics (Definition 3), the
latter is defined with respect to topo-models and the interior semantics (Definition 12). We again
omit the superscript for the model when it is clear from the context.

The semantic clauses for K and K̂ give us exactly the interior and the closure operators of
the corresponding model. In other words, according to the interior semantics, we have

[[Kφ]] = Int([[φ]])

[[K̂φ]] = Cl([[φ]]).

10



2.2 Connection between relational and topological models
As well known, there is a one-to-one correspondence between the relational semantics and the
interior semantics at the level of reflexive and transitive frames: every reflexive and transitive
Kripke frame corresponds to an Alexandroff space (defined below). The class of reflexive and
transitive frames therefore forms a subclass of all topological spaces. This connection not only
helps us to see how the interior semantics and the relational semantics relate to each other and
how the former extends the latter, but it also provides a method to prove topological completeness
results by using the already established results for the relational counterpart.

Definition 13 (Alexandroff space). A topological space (X, τ) is an Alexandroff space if τ is
closed under arbitrary intersections, i.e.,

⋂
A ∈ τ for any A ⊆ τ.

A topo-model X = (X, τ, V ) is called an Alexandroff model if (X, τ) is an Alexandroff space. A
very important feature of an Alexandroff space (X, τ) is that every point x ∈ X has a smallest
open neighbourhood. Given a reflexive and transitive Kripke frame (X,R), we can construct an
Alexandroff space (X, τR) by defining τR to be the set of all up-sets of subsets of X. The up-set
R(x) = ↑x = {y ∈ X | xRy} forms the smallest open neighborhood containing the point x. It is
then not hard to see that the set of all down-sets of (X,R) coincides with the set of all closed
sets in (X, τR), and that for any A ⊆ X, we have ClτR(A) = ↓A, where ClτR denotes the closure
operator of (X, τR). Conversely, for every topological space (X, τ), we define a specialization
preorder ⊑τ on X by

x ⊑τ y iff x ∈ Cl({y}) iff (∀U ∈ τ)(x ∈ U implies y ∈ U).

(X,⊑τ ) is therefore a reflexive and transitive Kripke frame, i.e., a preordered set. Moreover, we
have that R = ⊑τR , and that τ = τ⊑τ

if and only if (X, τ) is Alexandroff (see, e.g., van Benthem
& Bezhanishvili, 2007). Hence, there is a natural one-to-one correspondence between reflexive and
transitive Kripke models and Alexandroff models. In particular, for any reflexive and transitive
Kripke model M = (X,R, V ), we set B(M) = (X, τR, V ), and for any Alexandroff model
X = (X, τ, V ), we can form a reflexive and transitive Kripke model A(X ) = (X,⊑τ , V ). Moreover,
any two models that correspond to each other in the above mentioned way make the same
formulas of LK true at the same states, as shown in Proposition 18.4

Proposition 18. For all φ ∈ LK ,

1. for any reflexive and transitive Kripke model M = (X,R, V ) and x ∈ X,

M, x |= φ iff B(M), x |= φ;

2. for any Alexandroff model X = (X, τ, V ) and x ∈ X,

X , x |= φ iff A(X ), x |= φ.

Therefore, reflexive and transitive Kripke models and Alexandroff models are just different rep-
resentations of each other with respect to the language LK . In particular, the modal equivalence
stated in Proposition 18-(1) constitutes the key step that allows us to use the relational com-
pleteness results to prove completeness with respect to the interior semantics.

4In this proposition, when there is a relational model on the left-hand side of |=, this sign represents the
relational semantics given in Definition 3. When there is a topo-model, it represents the interior semantics given
in Definition 12. We hope that this overlap of notation will not confuse the reader and relevant semantic clauses
are contextually.
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2.3 Soundness and Completeness for S4K, S4.2K and S4.3K

Having explained the connection between reflexive-transitive Kripke models and Alexandroff
models, we can now state the topological completeness results for S4K and its two normal
extensions S4.2K and S4.3K that are of interests in later sections. In fact, Proposition 18-
(1) entails the following more general result regarding all Kripke complete normal extensions of
S4K .

Proposition 19 (van Benthem & Bezhanishvili, 2007). Every normal extension of S4K (over the
language LK) that is complete with respect to the standard relational semantics is also complete
with respect to the interior semantics.

Proof. Let LK be a normal extension of S4K that is complete with respect to the relational
semantics and φ ∈ LK such that φ ̸∈ LK . Then, by relational completeness of LK , there exists a
relational model M = (X,R, V ) and x ∈ X such that M, x ̸|= φ. Since LK extends the system
S4K , which is complete with respect to reflexive and transitive Kripke models, R can be assumed
to be at least reflexive and transitive. Then, by Proposition 18-(1), we obtain B(M), x ̸|= φ.

We can therefore prove completeness of the Kripke complete extensions of S4K with respect to
the interior semantics via their relational completeness. What makes the interior semantics more
general than Kripke semantics is tied to soundness. For example, S4K is not only sound with
respect to Alexandroff spaces, but also with respect to all topological spaces.

Theorem 20 (McKinsey & Tarski, 1944). S4K is sound and complete with respect to the class
of all topological spaces under the interior semantics.

Similar results have also been proven for S4.2K and S4.3K for the following restricted classes of
topological spaces.

Definition 14 (Extremally Disconnected Space). A topological space (X, τ) is called extremally
disconnected if the closure of each open subset of X is open.

Example 21. Alexandroff spaces constructed from directed preorders, i.e., from S4.2K-frames,
are extremally disconnected. To elaborate, it is routine to verify that, given a directed preordered
set (X,R) and an up-set U of (X,R), the downward-closure ↓U of the set U is still an up-
set. Recall that ClτR(U) = ↓U , where (X, τR) is the corresponding Alexandroff space and ClτR
is its closure operator. Therefore, since the set of all up-sets of (X,R) forms the corresponding
Alexandroff topology τR, we conclude that (X, τR) is extremally disconnected. This, in fact,
establishes the topological completeness result for S4.2K via Proposition 19. It is also well known
that topological spaces that are Stone-dual to complete Boolean algebras, e.g., the Stone-Čech
compactification β(N) of the set of natural numbers with a discrete topology, are extremally
disconnected (Sikorski, 1964).

Definition 15 (Hereditarily Extremally Disconnected Space). A topological space (X, τ) is called
hereditarily extremally disconnected (h.e.d.) if every subspace of (X, τ) is extremally discon-
nected.

Example 22. Alexandroff spaces corresponding to total preorders, i.e., corresponding to S4.3K-
frames, are hereditarily extremally disconnected. To see this, observe that for every nonempty
Y ⊆ X, the subspace (Y, (τR)Y ) of (X, τR) is in fact the Alexandroff space constructed from
the subframe (Y,R ∩ (Y × Y )) of (X,R). Moreover, every subframe of a total preorder (X,R)
is still a total preorder, thus, is also a directed preorder. Therefore, the correspondence between
total preorders and h.e.d spaces follows from the fact that Alexandroff spaces constructed from
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directed preorders are extremally disconnected. Another interesting and non-Alexandroff example
of an hereditarily extremally disconnected space is the topological space (N, τ) where N is the
set of natural numbers and τ = {∅, all cofinite subsets of N}. In this space, the set of all finite
subsets of N together with ∅ and X completely describes the set of closed subsets with respect to
(N, τ). It is not hard to see that for any U ∈ τ , Cl(U) = N and Int(C) = ∅ for any closed C
with C ̸= X. Moreover, every countable Hausdorff extremally disconnected space is hereditarily
extremally disconnected (Blaszczyk et al., 1993). For more examples of hereditarily extremally
disconnected spaces, we refer to (Blaszczyk et al., 1993).

Theorem 23 (Gabelaia, 2001). S4.2K is sound and complete with respect to the class of ex-
tremally disconnected topological spaces under the interior semantics.

Theorem 24 (Bezhanishvili et al., 2015). S4.3K is sound and complete with respect to the class
of hereditarily extremally disconnected topological spaces under the interior semantics.

Exercises:
1. Prove Theorems 23 and 24 by using a similar reasoning as in Proposition 19. (Hint: Use

Theorem 1 and consider the Alexandroff spaces given in Examples 21 and 22.)

Having presented the interior semantics, we elaborate on its epistemic significance in the
following section.

2.4 The Motivation behind Knowledge as Interior

Note that the conception of knowledge as interior is not the only type of knowledge we study
throughout this course. In fact, we favor the “knowability” interpretation of the interior operator
(we will discuss this notion of knowability later, see, e.g., Bjorndahl (2018)). However, the
aforementioned semantics can be considered as the most primitive, in a sense as the most direct
way of interpreting an epistemic modality in this setting. Even in this very basic form, the
interior semantics works at least as well as the standard relational semantics for knowledge, and,
additionally, it extends the relational semantics while admitting an evidential interpretation of
knowledge.

The interior semantics is naturally epistemic and extends the relational semantics.
The initial reason as to why the topological interior operator can be considered as knowledge is
inherent to the properties of this operator. As noted in Section 1.2, the Kuratowski axioms (I1)-
(I4) correspond exactly to the axioms of the system S4K , when K is interpreted as the interior
modality (see Table 4 for the one-to-one correspondence). Therefore, elementary topological

S4K axioms Kuratowski axioms
(KK) K(φ ∧ ψ) ↔ (Kφ ∧Kψ) Int(A ∩B) = Int(A) ∩ Int(B)
(TK) Kφ→ φ Int(A) ⊆ A
(4K) Kφ→ KKφ Int(A) ⊆ Int(Int(A))
(NecK) from φ, infer Kφ Int(X) = X

Table 4: S4K vs. Kuratowski axioms

operators such as the interior operator, or, dually, the closure operator produces the epistemic
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logic S4K with no need for additional constraints (also see Theorem 20). In other words, in
its most general form, topologically modelled knowledge is Factive and Positively Introspective,
however, it does not necessarily possess stronger properties. On the other hand, this in no way
limits the usage of interior semantics for stronger epistemic systems. In accordance with the
case for the relational semantics, we can restrict the class of spaces we work with and interpret
stronger epistemic logics such as S4.2K , S4.3K (see Theorems 23 and 24) and S5K in a similar
manner (see, e.g., van Benthem & Bezhanishvili, 2007, p. 253). To that end, topological spaces
provide sufficiently flexible structures to study knowledge of different strength. They are moreover
naturally epistemic since the most general class of spaces, namely the class of all topological
spaces, constitutes the class of models of arguably the weakest, yet philosophically the most
accepted normal system S4K . Moreover, as explained in Section 2.2, relational models for the
logic S4K , and for its normal extensions, correspond to the subclass of Alexandroff models (see
Proposition 18). The interior semantics therefore generalizes the standard relational semantics
for knowledge.

One may however argue that the above reasons are more of a technical nature showing that
the interior semantics works as well as the relational semantics, therefore motivate “why we
could use topological spaces" rather than “why we should use topological spaces” to interpret
knowledge, as opposed to using relational semantics. Certainly the most important argument in
favour of the conception of knowledge as the interior operator is of a more ‘semantic’ nature: the
interior semantics provides a deeper insight into the evidence-based interpretation of knowledge.

Evidence as open sets. The idea of treating ‘open sets as pieces of evidence’ is adopted from
the topological semantics for intuitionistic logic, dating back to the 1930s (see, e.g., Troelstra
& van Dalen, 1988). In a topological-epistemological framework, typically, the elements of a
given open basis are interpreted as observable evidence, whereas the open sets of the topology
are interpreted as properties that can be verified based on the observable evidence. In fact, the
connection between evidence and open sets comes to exist at the most elementary level, namely
at the level of a subbasis. We can think of a subbasis as a collection of observable evidence that
is directly obtained by an agent via, e.g., testimony, measurement, approximation, computation
or experiment (see, e.g., Özgün (2017); Baltag et al. (2022) for a more elaborate formalism of
this interpretation. We will talk more about this throughout the course). The family of directly
observable pieces of evidence therefore naturally forms an open topological basis: closure under
finite intersection captures an agent’s ability to put finitely many pieces into a single piece,
i.e., her ability to derive more refined evidence from direct ones by combining finitely many of
them together. Therefore, a topological space does not only account for the plain conception of
evidence as open sets, but it is rich enough to differentiate various notions of evidence possession
(again, see Özgün (2017); Baltag et al. (2022)). The above-mentioned correspondence between
evidence and open sets constitutes the main motivation behind the topological frameworks we
will examine throughout this course and we will elaborate on different views and interpretations
of topological evidence as they come up.

On the other hand, the basic epistemic language LK interpreted by the interior semantics is
clearly not expressive enough to distinguish different types of open sets, e.g., it cannot distin-
guish a basic open from an arbitrary open, simply because the only topological modality K is
interpreted as an existential claim of an open neighbourhood of the actual state that entails the
known proposition:

x ∈ KP iff x ∈ Int(P ) (1)
iff (∃U ∈ τ)(x ∈ U and U ⊆ P ) (2)
iff (∃U ∈ Bτ )(x ∈ U and U ⊆ P ) (3)
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where Bτ is a basis for τ . Therefore, in its current form, the interior semantics does not form a
sufficiently strong setting to account for (various type of) evidence possession alone. However,
even based on this basic shape, the notion of knowledge as the interior operator yields an ev-
idential interpretation at a purely semantic level. More precisely, from an extensional point of
view5, a proposition P is true at world x if x ∈ P . If an open U is included in a set P , then we
can say that proposition P is entailed/supported by evidence U . Open neighbourhoods U of the
actual world x play the role of sound (correct, truthful) evidence. Therefore, as basic open sets
are the pieces of observable evidence, (3) means that the actual world x is in the interior of P
iff there exists a sound piece of evidence U that supports P . That is, according to the interior
semantics, the agent knows P at x iff she has a sound/correct piece of evidence supporting P .
Moreover, open sets will then correspond to properties that are in principle verifiable by the
agent: whenever they are true, they are supported by a sound piece of evidence, therefore, can be
known. Dually, we have

x ̸∈ Cl(P ) iff (∃U ∈ τ)(x ∈ U and U ⊆ X \ P ) (4)

meaning that closed sets correspond to falsifiable properties: whenever they are false, they are
falsified by a sound piece of evidence. These ideas have also been used and developed in (Vickers,
1989; Kelly, 1996) with connections to epistemology, logic and learning theory.

The interior-based semantics for knowledge has been extended to multiple agents (van Ben-
them et al., 2005), to common knowledge (Barwise, 1988; van Benthem & Sarenac, 2004) to logics
of learning and observational effort (Moss & Parikh, 1992; Dabrowski et al., 1996; Georgatos,
1993, 1994), to topological versions of dynamic-epistemic logic (Zvesper, 2010) (see Aiello et al.,
2007, for a comprehensive overview on the field).

In the second part of this course, we focus on the so-called Subset Space Logics for learning
and observational effort introduced by Moss & Parikh (1992) and later further developed by
Dabrowski et al. (1996); Georgatos (1993, 1994), together with their more contemporary doxastic
extensions (see, e.g., Bjorndahl & Özgün 2017) and dynamic variants (see, e.g., Bjorndahl 2018;
van Ditmarsch et al. 2019; Baltag et al. 2017, 2018, 2020).

3 Subset Space Semantics and TopoLogic

The formalism of “topologic”, introduced by Moss & Parikh (1992), and investigated further by
Dabrowski et al. (1996), Georgatos (1993, 1994), Weiss & Parikh (2002) and others, represents
a single-agent subset space logic (SSL) for the notions of knowledge and effort. One of the
crucial aspects of this framework is that it is concerned not only with the representation of
knowledge, but also aimed at giving an account of information gain or knowledge increase in
terms of observational effort.6 It is the latter feature of this work that makes the use of subset
spaces significant. While the knowledge modality Kφ has the standard reading “the agent knows
φ (is true)”, in the subset space setting, the effort modality 2φ captures a notion of effort as
any action that results in an increase in knowledge and is read as “φ stays true no matter
what further evidence-gathering efforts are made”7. The modality 2 therefore captures a notion
of stability under evidence-gathering. Effort can be in the form of measurement, computation,
approximation, or even announcement, depending on the context and the information source. To

5Extensional here means any semantic formalism that assigns the same meaning to sentences having the same
extension.

6Moss & Parikh (1992) is partly inspired by Vickers’ work on reconstruction of topology via a logic of finite
observation (Vickers, 1989).

7Please note the meaning change for 2 in this framework. It is not the same modality as in Section 1.
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illustrate the underlying intuition of the subset space semantics, and the notions of knowledge,
effort, and evidence it represents, suppose for instance, that you have measured your height and
obtained a reading of 5 feet and 10 inches ±3 inches. The measuring devices we use to calculate
such quantities always come with an error range, therefore giving us an approximation rather
than the precise value. With this measurement in hand, you cannot be said to know whether you
are less than 6 feet tall, as your measurement, i.e., the current evidence you have, does not rule
out that you are taller or shorter. However, if you are able to spend more resources and take a
more precise measurement, e.g., by using a more accurate meter with ± 1 error range, you come
to know that you are less than 6 feet tall (Bjorndahl & Özgün, 2017). Subset space logics are
designed to represent such situations, and therefore involve two modalities: one for knowledge
K, and the other one for effort 2.

The formulas in the bimodal language are interpreted on subset spaces (X,O), where X is
a nonempty domain and O is an arbitrary nonempty collection of subsets of X. The elements
of O represent possible observations, and more effort corresponds to a more refined truthful
observation, thus, a possible increase in knowledge. A subset space is not necessarily a topological
space, however, topological spaces do constitute a subclass of subset spaces and topological
reasoning provides the intuition behind this semantics, as we will elaborate below.8

In this section, we provide the formal background for the subset space semantics of Moss
& Parikh (1992), explaining how these “topological” structures constitute models that are well-
equipped to give an account for evidence-based knowledge and its dynamics. We also point out
the differences and connection to the topological approaches we presented earlier in the course. In
particular, we compare the evidence representation on evidence models of van Benthem & Pacuit
(2011) with the one on subset models of Moss & Parikh (1992), and in turn, the type of evidence-
based knowledge studied on these structures.

3.1 Syntax and Semantics
In their influential work, Moss & Parikh (1992) consider the bimodal language LK2 given by the
grammar

φ ::= p | ¬φ | φ ∧ φ | Kφ | 2φ,

and interpret it on subset spaces, a class of models generalizing topological spaces.

Definition 16 (Subset Space/Model). A subset space is a pair (X,O), where X is a nonempty
set of states and O is a collection of subsets of X. A subset model is a tuple X = (X,O, V ),
where (X,O) is a subset space and V : Prop → P(X) a valuation function.

It is not hard to see that subset spaces are just like the evidence models of van Benthem
& Pacuit (2011) (see Slides), but with no constraints on the set of subsets O.9 However, the
way the truth of a formula is defined on subset models leads to a crucial difference between the
two settings, especially concerning the type of evidence represented by the elements of O, and

8The subset space setting also comes with an independent technical motivation. Many of the aforementioned
sources are concerned with axiomatizing the logics of smaller classes of subset spaces meeting particular closure
conditions on the set of subsets O. For example, while Moss & Parikh (1992) axiomatized the logic of subset
spaces, Georgatos (1993, 1994) and Dabrowski et al. (1996) provided an axiomatization of the logic of topological
spaces, and complete lattice spaces. Moreover, Georgatos (1997) axiomatized the logic of treelike spaces, and Weiss
& Parikh (2002) presented an axiomatization for the class of directed spaces. These results are quite interesting
from a modal theoretical perspective, however, in this course, we are primarily interested in the applications of
topological ideas in epistemic logic. We therefore focus on the epistemic motivation behind the topologic formalism.

9We could in fact define the subset spaces exactly the same way as evidence models by putting the constraints
X ∈ O and ∅ ̸∈ O. This would technically make no difference, however, we here prefer to present the most general
case.
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the characterization of the notion of knowledge interpreted based on evidence. This point will
become clear once we present the formal semantics below.

Subset space semantics interprets formulas not at worlds x but at epistemic scenarios of the
form (x,U), where x ∈ U ∈ O. Let ES(X ) denote the collection of all such pairs in X . Given
an epistemic scenario (x, U) ∈ ES(X ), the set U is called its epistemic range; intuitively, it
represents the agent’s current information as determined, for example, by the measurements she
has taken. The language LK2 is interpreted on subset spaces as follows:

Definition 17 (Subset Space Semantics for LK2). Given a subset space model X = (X,O, V )
and an epistemic scenario (x, U) ∈ ES(X ), truth of a formula in the language LK2 is defined
recursively as follows:

X , (x, U) |= p iff x ∈ V (p), where p ∈ Prop
X , (x, U) |= ¬φ iff not X , (x,U) |= φ
X , (x, U) |= φ ∧ ψ iff X , (x,U) |= φ and X , (x,U) |= ψ
X , (x, U) |= Kφ iff (∀y ∈ U)(X , (y, U) |= φ)
X , (x, U) |= 2φ iff (∀O ∈ O)(x ∈ O ⊆ U implies X , (x,O) |= φ)

We say that a formula φ is valid in a model X , and write X |= φ, if X , (x, U) |= φ for
all scenarios (x, U) ∈ ES(X ). We say φ is valid, and write |= φ, if X |= φ for all X . We let
[[φ]]UX = {x ∈ U | X , (x, U) |= φ} denote the truth set, or equivalently, extension of φ under U in
the model X . We again omit the notation for the model, writing simply (x,U) |= φ and [[φ]]U ,
whenever X is fixed.

3.2 Epistemic readings of subset space semantics: current vs potential
evidence

In subset space semantics, the points of the space represent “possible worlds” (or, states of the
world). However, having the units of evaluation as pairs of the form (x, U)—rather than a single
state x—allows us to distinguish the evidence that the agent currently has in hand from the
potential evidence she can in principle obtain. More precisely, elements of O can be thought of
as potential pieces of evidence meant to encompass all the evidence that might be learnt in the
future, while the epistemic range U of an epistemic scenario (x, U) corresponds to the current
evidence, i.e., “evidence-in-hand” by means of which the agent’s knowledge is evaluated.10 This is
made precise in the semantic clause for Kφ, which stipulates that the agent knows φ just in case
φ is entailed by her factive11 evidence-in-hand. The knowledge modality K therefore behaves like
the global modality within the given epistemic range U . For this reason, in various places, we will
often refer to K as the global modality. Thus, the type of knowledge captured by the modality
K in this setting is absolutely certain, infallible knowledge based on the agent’s current truthful
evidence. These points already underline the substantial differences between the two evidence-
based epistemic frameworks we study throughout the course: while E0 of an evidence model
(X, E0, V ) represents the set of evidence pieces the agent has already acquired about the actual
situation, the set O of a subset space model (X,O, V ) represents the set of potential evidence
the agent can in principle discover, even if she does not happen to personally have it in hand
at the moment. A subset space model is therefore intended to carry all pieces of evidence the
agent currently has and can potentially gather later, hence, supports model-internal means to
interpret evidence-based information dynamics, as displayed, e.g., by the effort modality. In this

10The term “evidence-in-hand” is borrowed from (Bjorndahl & Özgün, 2017), where the elements of O are
described as “evidence-out-there”.

11x ∈ U expresses the factivity of evidence.
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framework, more effort means acquiring more evidence for the actual state of affairs, therefore,
a better approximation of the real state. The effort modality 2φ is thus interpreted in terms of
neighbourhood-shrinking and read as “φ is stably true under evidence-acquisition”, i.e., φ is true,
and will stay true no matter what further factive evidence is obtained.

As every topological space is a subset space, the above readings of the modalities also apply
to the topological models. However, the additional structure that topological spaces possess helps
us to formalize naturally some further aspects of evidence aggregation. For example, when O
is closed under finite intersections, we can consider the epistemic range U of a given epistemic
scenario (x,U) as a finite stream (O1, . . . , On) of truthful information the agent has received and
put together: x ∈ U =

⋂
i≤nOi ∈ O (Baltag et al., 2015, 2018). Moreover, as noted in (Moss

& Parikh, 1992), we can express some topological concepts in the language LK2 that, in fact,
lead to concise modal reformulations of verifiable and falsifiable propositions (as also noted in
Georgatos, 1993). To be more precise, given a topo-model X = (X, τ, V ) and a propositional
variable p ∈ Prop, V (p) is open in τ iff p → 3Kp is valid in X . Recall that the open sets of a
topology are meant to represent potential evidence, i.e., properties of the actual state that are in
principle verifiable: whenever they are true, they are supported by a sound piece of evidence that
the agent can in principle obtain, therefore, can be known (Vickers, 1989; Kelly, 1996). Therefore,
we can state that

• p is verifiable in X iff p→ 3Kp is valid in X .

In contrast, V (p) is closed in τ iff 2K̂p→ p is valid in X , and closed sets correspond to properties
that are in principle falsifiable: whenever they are false, their falsity can be known. In a similar
manner, this can be formalized in the language LK2 as

• p is falsifiable in X iff ¬p→ 3K¬p, or equivalently, 2K̂p→ p is valid in X .

As remarked in (Vickers, 1989; Kelly, 1996), the closure properties of a topology are satisfied in
this interpretation. First, contradictions (∅) and tautologies (X) are in principle verifiable (as
well as falsifiable). The conjunction p ∧ q of two verifiable facts is also verifiable: if p ∧ q is true,
then both p and q are true, and since both are assumed to be verifiable, they can both be known,
and hence p ∧ q can be known. Finally, if {pi | i ∈ I} is a (possibly infinite) family of verifiable
facts, then their disjunction

∨
i∈I pi is verifiable: in order for the disjunction to be true, then

there must exist some i ∈ I such that pi is true, and so pi can be known (since it is verifiable),
and as a result the disjunction

∨
i∈I pi can also be known (by inference from pi).

Exercises:
Given a subset space model (X,O, V ) and p ∈ Prop, prove that

1. V (p) is open in τ iff p→ 3Kp is valid in X .

2. V (p) is closed in τ iff 2K̂p→ p is valid in X .

3.3 Axiomatizations: SSL and TopoLogic

Moss & Parikh (1992) provided a sound and complete axiomatization of their logic of knowledge
and effort with respect to the class of subset spaces. Its purely topological version was later
studied by Georgatos (1993, 1994), and Dabrowski et al. (1996), who independently provided
complete axiomatizations and proved decidability. In this section, we give the axiomatizations
for the logic of subset spaces (SSL) and of topological spaces (TopoLogic). We state the relevant
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completeness, decidability and finite model property results, and refer to the aforementioned
sources for their proofs.

The axiomatization of the subset space logic, denoted by SSL, is obtained by augmenting
the logic S5K + S42 for the language LK2 with the additional axiom schemes (AP) and (CA)
presented in Table 5.

(AP) (p→ 2p) ∧ (¬p→ 2¬p), for p ∈ Prop Atomic Permanence
(CA) K2φ→ 2Kφ Cross Axiom

Table 5: Additional axiom schemes of SSL

Therefore, the effort modality on subset spaces is S4-like. The axiom (AP) states that the
truth value of the propositional variables does not depend on the given epistemic range, but only
depends on the actual state. In fact, this is the case for all Boolean formulas in LK2, and can be
proven in the system SSL. The cross axiom is also interesting since it links the two modalities
of this system.

Theorem 25 (Moss & Parikh, 1992). SSL is sound and complete with respect to the class of all
subset spaces.

Exercises:
1. Show that SSL is sound with respect to the class of all subset spaces.

2. Show that ¬Kp→ 2¬Kp is not valid. What does this tell us about the axiom (AP)?

It was shown in (Dabrowski et al., 1996) that the logic of subset spaces does not have the finite
model property, however, its decidability was proven by using non-standard models called cross
axiom models (see Dabrowski et al., 1996, Section 2.3).

Concerning the logic of topological spaces for LK2, i.e., the so-called TopoLogic, it is axiom-
atized by adding the following axiom schemes to the axiomatization of SSL:

(WD) 32φ→ 23φ Weak Directedness
(UN) (3φ ∧ K̂3ψ) → 3(3φ ∧ K̂3ψ ∧K3K̂(φ ∨ ψ)) Union Axiom

Table 6: Additional axiom schemes of TopoLogic

Theorem 26 (Georgatos, 1993, 1994). TopoLogic is sound and complete with respect to the class
of all topological spaces. Moreover, it has the finite model property, therefore, it is decidable.

The literature on subset space semantics goes far beyond the presentation of this section. How-
ever, we here confine ourselves to the material we will present in our lectures, and refer to (Parikh
et al., 2007) for a survey of the further technical results, extensions, and variations of the topo-
logic formalism. Further extensions involve the dynamics of evidence acquisition: the connection
between the effort modality, and the well-known dynamic epistemic modalities such as the pub-
lic and arbitrary announcement modalities have been studied, e.g., in Bjorndahl (2018); van
Ditmarsch et al. (2019); Baltag et al. (2017, 2018, 2020).
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